skip to main content
10.1145/3594806.3596558acmotherconferencesArticle/Chapter ViewAbstractPublication PagespetraConference Proceedingsconference-collections
research-article

Anomaly Detection in the Metal-Textile Industry for the Reduction of the Cognitive Load of Quality Control Workers

Published:10 August 2023Publication History

ABSTRACT

This paper presents an approach for reducing the cognitive load for humans working in quality control (QC) for production processes that adhere to the 6σ -methodology. While 100% QC requires every part to be inspected, this task can be reduced when a human-in-the-loop QC process gets supported by an anomaly detection system that only presents those parts for manual inspection that have a significant likelihood of being defective. This approach shows good results when applied to image-based QC for metal textile products.

References

  1. Francisco Javier Blanco-Encomienda, Elena Rosillo-Díaz, and Juan Francisco Muñoz-Rosas. 2018. Importance of Quality Control Implementation in the Production Process of a Company. European Journal of Economics and Business Studies 10, 1 (March 2018), 248. https://doi.org/10.26417/ejes.v10i1.p248-252Google ScholarGoogle ScholarCross RefCross Ref
  2. Niv Cohen and Yedid Hoshen. 2020. Sub-Image Anomaly Detection with Deep Pyramid Correspondences. https://doi.org/10.48550/ARXIV.2005.02357Google ScholarGoogle ScholarCross RefCross Ref
  3. Yajie Cui, Zhaoxiang Liu, and Shiguo Lian. 2022. A Survey on Unsupervised Visual Industrial Anomaly Detection Algorithms. https://doi.org/10.48550/ARXIV.2204.11161Google ScholarGoogle ScholarCross RefCross Ref
  4. Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. 2020. PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization. https://doi.org/10.48550/ARXIV.2011.08785Google ScholarGoogle ScholarCross RefCross Ref
  5. Martin G. Helander Eva M. Lovén. 1997. Effect of operator competence on assessment of quality control in manufacturing. International Journal of Industrial Ergonomics 19, 4 (April 1997), 307–316. https://doi.org/10.1016/S0169-8141(96)00040-6Google ScholarGoogle ScholarCross RefCross Ref
  6. Kengo Ishida, Yuki Takena, Yoshiki Nota, Rinpei Mochizuki, Itaru Matsumura, and Gosuke Ohashi. 2023. SA-PatchCore: Anomaly Detection in Dataset With Co-Occurrence Relationships Using Self-Attention. IEEE Access 11 (2023), 3232–3240. https://doi.org/10.1109/ACCESS.2023.3234745Google ScholarGoogle ScholarCross RefCross Ref
  7. Jin-Hwa Kim, Do-Hyeong Kim, Saehoon Yi, and Taehoon Lee. 2021. Semi-orthogonal embedding for efficient unsupervised anomaly segmentation. (2021).Google ScholarGoogle Scholar
  8. Ning Li, Kaitao Jiang, Zhiheng Ma, Xing Wei, Xiaopeng Hong, and Yihong Gong. 2021. Anomaly Detection via Self-organizing Map. https://doi.org/10.48550/ARXIV.2107.09903Google ScholarGoogle ScholarCross RefCross Ref
  9. Jiaqi Liu, Guoyang Xie, Jingbao Wang, Shangnian Li, Chengjie Wang, Feng Zheng, and Yaochu Jin. 2023. Deep Industrial Image Anomaly Detection: A Survey. https://doi.org/10.48550/ARXIV.2301.11514Google ScholarGoogle ScholarCross RefCross Ref
  10. Timothy S. Newman and Anil K. Jain. 1995. A Survey of Automated Visual Inspection. Computer Vision and Image Understanding 61, 2 (March 1995), 231–262. https://doi.org/10.1006/cviu.1995.1017Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Oliver Rippel, Patrick Mertens, Eike Konig, and Dorit Merhof. 2021. Gaussian Anomaly Detection by Modeling the Distribution of Normal Data in Pretrained Deep Features. IEEE Transactions on Instrumentation and Measurement 70 (2021), 1–13. https://doi.org/10.1109/tim.2021.3098381Google ScholarGoogle ScholarCross RefCross Ref
  12. Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, and Mubarak Shah. 2021. Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection. https://doi.org/10.48550/ARXIV.2111.09099Google ScholarGoogle ScholarCross RefCross Ref
  13. Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler. 2021. Towards Total Recall in Industrial Anomaly Detection. https://doi.org/10.48550/ARXIV.2106.08265Google ScholarGoogle ScholarCross RefCross Ref
  14. Ravi S. Reosekar and Sanjay D. Pohekar. 2014. Six Sigma methodology: a structured review. International Journal of Lean Six Sigma 5, 4 (2014), 392–422.Google ScholarGoogle ScholarCross RefCross Ref
  15. Judi See. 2012. Visual inspection : a review of the literature.Technical Report. https://doi.org/10.2172/1055636Google ScholarGoogle Scholar
  16. Xian Tao, Xinyi Gong, Xin Zhang, Shaohua Yan, and Chandranath Adak. 2022. Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey. IEEE Transactions on Instrumentation and Measurement 71 (2022), 1–21. https://doi.org/10.1109/tim.2022.3196436Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Tjahjono, P. Ball, V.I. Vitanov, C. Scorzafave, J. Nogueira, J. Calleja, M. Minguet, L. Narasimha, A. Rivas, A. Srivastava, S. Srivastava, and A. Yadav. 2010. Six Sigma: a literature review. International Journal of Lean Six Sigma 1, 3 (Aug. 2010), 216–233. https://doi.org/10.1108/20401461011075017Google ScholarGoogle ScholarCross RefCross Ref
  18. Guodong Wang, Shumin Han, Errui Ding, and Di Huang. 2021. Student-Teacher Feature Pyramid Matching for Anomaly Detection. arXiv:arXiv:2103.04257Google ScholarGoogle Scholar
  19. Rüdiger Wirth and Jochen Hipp. 2000. Crisp-dm: towards a standard process modell for data mining.Google ScholarGoogle Scholar
  20. Jian Ai Yeow, Poh Kiat Ng, Khong Sin Tan, Tee Suan Chin, and Wei Yin Lim. 2014. Effects of Stress, Repetition, Fatigue and Work Environment on Human Error in Manufacturing Industries. Journal of Applied Sciences 14, 24 (Dec. 2014), 3464–3471. https://doi.org/10.3923/jas.2014.3464.3471Google ScholarGoogle ScholarCross RefCross Ref
  21. Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. 2021. DRAEM – A discriminatively trained reconstruction embedding for surface anomaly detection. arXiv:arXiv:2108.07610Google ScholarGoogle Scholar

Index Terms

  1. Anomaly Detection in the Metal-Textile Industry for the Reduction of the Cognitive Load of Quality Control Workers

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            PETRA '23: Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments
            July 2023
            797 pages
            ISBN:9798400700699
            DOI:10.1145/3594806

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 10 August 2023

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited
          • Article Metrics

            • Downloads (Last 12 months)52
            • Downloads (Last 6 weeks)3

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format