skip to main content
10.1145/3588432.3591553acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article
Open Access

Inverse Global Illumination using a Neural Radiometric Prior

Published:23 July 2023Publication History

ABSTRACT

Inverse rendering methods that account for global illumination are becoming more popular, but current methods require evaluating and automatically differentiating millions of path integrals by tracing multiple light bounces, which remains expensive and prone to noise. Instead, this paper proposes a radiometric prior as a simple alternative to building complete path integrals in a traditional differentiable path tracer, while still correctly accounting for global illumination. Inspired by the Neural Radiosity technique, we use a neural network as a radiance function, and we introduce a prior consisting of the norm of the residual of the rendering equation in the inverse rendering loss. We train our radiance network and optimize scene parameters simultaneously using a loss consisting of both a photometric term between renderings and the multi-view input images, and our radiometric prior (the residual term). This residual term enforces a physical constraint on the optimization that ensures that the radiance field accounts for global illumination. We compare our method to a vanilla differentiable path tracer, and more advanced techniques such as Path Replay Backpropagation. Despite the simplicity of our approach, we can recover scene parameters with comparable and in some cases better quality, at considerably lower computation times.

Skip Supplemental Material Section

Supplemental Material

papers_762_VOD.mp4

mp4

178.4 MB

References

  1. James Arvo and David Kirk. 1990. Particle Transport and Image Synthesis. SIGGRAPH Comput. Graph. 24, 4 (sep 1990), 63–66. https://doi.org/10.1145/97880.97886Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley. 2021. Systematically Differentiating Parametric Discontinuities. ACM Trans. Graph. 40, 107 (2021), 107:1–107:17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.Google ScholarGoogle Scholar
  4. Brent Burley. 2012. Physically Based Shading at Disney. In Practical Physically-Based Shading in Film and Game Production. ACM SIGGRAPH 2012 Courses. https://doi.org/10.1145/2343483.2343493Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. G. Greger, P. Shirley, P.M. Hubbard, and D.P. Greenberg. 1998. The irradiance volume. IEEE Computer Graphics and Applications 18, 2 (1998), 32–43. https://doi.org/10.1109/38.656788Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural Radiosity. ACM Trans. Graph. 40, 6, Article 236 (dec 2021), 11 pages. https://doi.org/10.1145/3478513.3480569Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Saeed Hadadan and Matthias Zwicker. 2022. Differentiable Neural Radiosity. arXiv preprint arXiv:2201.13190 (2022).Google ScholarGoogle Scholar
  8. Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini, Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022. Mitsuba 3 renderer. https://mitsuba-renderer.org.Google ScholarGoogle Scholar
  9. James T. Kajiya. 1986. The Rendering Equation. SIGGRAPH Comput. Graph. 20, 4 (aug 1986), 143–150. https://doi.org/10.1145/15886.15902Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch. 2005. Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics 11, 5 (2005), 550–561. https://doi.org/10.1109/TVCG.2005.83Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. 2020. Modular Primitives for High-Performance Differentiable Rendering. arxiv:2011.03277 [cs.GR]Google ScholarGoogle Scholar
  13. Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. 37, 6, Article 222 (Dec. 2018), 11 pages. https://doi.org/10.1145/3272127.3275109Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. 2019. Soft Rasterizer: Differentiable Rendering for Unsupervised Single-View Mesh Reconstruction. arxiv:1901.05567 [cs.CV]Google ScholarGoogle Scholar
  15. Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable Renderer. In Computer Vision – ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.). Springer International Publishing, Cham, 154–169.Google ScholarGoogle ScholarCross RefCross Ref
  16. Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing Discontinuous Integrands for Differentiable Rendering. ACM Trans. Graph. 38, 6, Article 228 (nov 2019), 14 pages. https://doi.org/10.1145/3355089.3356510Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV.Google ScholarGoogle Scholar
  18. Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural Control Variates. ACM Trans. Graph. 39, 6, Article 243 (nov 2020), 19 pages. https://doi.org/10.1145/3414685.3417804Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time Neural Radiance Caching for Path Tracing. 40, 4 (2021). https://doi.org/10.1145/3450626.3459812Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. arxiv:2201.05989 [cs.CV]Google ScholarGoogle Scholar
  21. Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, and Wenzel Jakob. 2020. Radiative Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering. ACM Trans. Graph. 39, 4, Article 146 (July 2020), 15 pages. https://doi.org/10.1145/3386569.3392406Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. https://doi.org/10.48550/ARXIV.1912.01703Google ScholarGoogle Scholar
  23. Felix Petersen, Amit H. Bermano, Oliver Deussen, and Daniel Cohen-Or. 2019. Pix2Vex: Image-to-Geometry Reconstruction using a Smooth Differentiable Renderer. arxiv:1903.11149 [cs.CV]Google ScholarGoogle Scholar
  24. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.) (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 1266 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo. 2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph. 32, 4, Article 130 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2462009Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-Peter Seidel, and Christian Theobalt. 2016. A Versatile Scene Model with Differentiable Visibility Applied to Generative Pose Estimation. CoRR abs/1602.03725 (2016). arXiv:1602.03725http://arxiv.org/abs/1602.03725Google ScholarGoogle Scholar
  27. Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron. 2020. NeRV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis. https://doi.org/10.48550/ARXIV.2012.03927Google ScholarGoogle Scholar
  28. A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-Brualla, T. Simon, J. Saragih, M. Nießner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y. Zhu, C. Theobalt, M. Agrawala, E. Shechtman, D. B Goldman, and M. Zollhöfer. 2020. State of the Art on Neural Rendering. Computer Graphics Forum 39, 2 (2020), 701–727. https://doi.org/10.1111/cgf.14022Google ScholarGoogle ScholarCross RefCross Ref
  29. A. Tewari, J. Thies, B. Mildenhall, P. Srinivasan, E. Tretschk, W. Yifan, C. Lassner, V. Sitzmann, R. Martin-Brualla, S. Lombardi, T. Simon, C. Theobalt, M. Nießner, J. T. Barron, G. Wetzstein, M. Zollhöfer, and V. Golyanik. 2022. Advances in Neural Rendering. Computer Graphics Forum 41, 2 (2022), 703–735. https://doi.org/10.1111/cgf.14507Google ScholarGoogle ScholarCross RefCross Ref
  30. Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation: Differentiating Light Paths Using Constant Memory and Linear Time. ACM Trans. Graph. 40, 4, Article 108 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459804Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing Solution for Diffuse Interreflection. SIGGRAPH Comput. Graph. 22, 4 (jun 1988), 85–92. https://doi.org/10.1145/378456.378490Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, and Wenzel Jakob. 2021. Monte Carlo Estimators for Differential Light Transport. ACM Trans. Graph. 40, 4, Article 78 (July 2021), 16 pages. https://doi.org/10.1145/3450626.3459807Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020. Path-Space Differentiable Rendering. ACM Trans. Graph. 39, 4 (2020), 143:1–143:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul Debevec, William T. Freeman, and Jonathan T. Barron. 2021. NeRFactor: Neural Factorization of Shape and Reflectance under an Unknown Illumination. ACM Trans. Graph. 40, 6, Article 237 (dec 2021), 18 pages. https://doi.org/10.1145/3478513.3480496Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. 2022. Modeling Indirect Illumination for Inverse Rendering. https://doi.org/10.48550/ARXIV.2204.06837Google ScholarGoogle Scholar

Index Terms

  1. Inverse Global Illumination using a Neural Radiometric Prior

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SIGGRAPH '23: ACM SIGGRAPH 2023 Conference Proceedings
        July 2023
        911 pages
        ISBN:9798400701597
        DOI:10.1145/3588432

        Copyright © 2023 Owner/Author

        This work is licensed under a Creative Commons Attribution-NoDerivatives International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 July 2023

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate1,822of8,601submissions,21%

        Upcoming Conference

        SIGGRAPH '24
      • Article Metrics

        • Downloads (Last 12 months)528
        • Downloads (Last 6 weeks)64

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format