skip to main content
10.1145/3587135.3592197acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article
Open Access

Scalable Experimental Bounds for Dicke and GHZ States Fidelities

Published:04 August 2023Publication History

ABSTRACT

Estimating the state preparation fidelity of highly entangled states on noisy intermediate-scale quantum (NISQ) devices is an important task for benchmarking and application considerations. Unfortunately, exact fidelity measurements quickly become prohibitively expensive, as they scale exponentially as O(3N) for N-qubit states, using full state tomography with measurements in all Pauli bases combinations. However, Somma et al. [20] established that the complexity could be drastically reduced when looking at fidelity lower bounds for states that exhibit symmetries, such as Dicke States and GHZ States. For larger states, these bounds still need to be tight enough to provide reasonable estimations on NISQ devices.

For the first time and more than 15 years after the theoretical introduction, we report meaningful lower bounds for the state preparation fidelity of all Dicke States up to N = 10, and all GHZ states up to N = 20 on Quantinuum H1 ion-trap systems using efficient implementations of recently proposed scalable circuits for these states. Our achieved lower bounds match or exceed previously reported exact fidelities on superconducting systems for much smaller states. This work provides a path forward to benchmarking entanglement as NISQ devices improve in size and quality.

References

  1. 2021. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2573505Google ScholarGoogle ScholarCross RefCross Ref
  2. 2021. Quantinuum H1, Powered by Honeywell. http://groups.csail.mit.edu/Google ScholarGoogle Scholar
  3. Shamminuj Aktar, Andreas Bärtschi, Abdel-Hameed A Badawy, and Stephan Eidenbenz. 2022. A Divide-and-Conquer Approach to Dicke State Preparation. IEEE Transactions on Quantum Engineering 3 (2022), 1--16. https://doi.org/10.1109/TQE.2022.3174547 arXiv:2112.12435Google ScholarGoogle ScholarCross RefCross Ref
  4. Andreas Bärtschi and Stephan Eidenbenz. 2019. Deterministic Preparation of Dicke States. In 22nd International Symposium on Fundamentals of Computation Theory, FCT'19. 126--139. https://doi.org/10.1007/978-3-030-25027-0_9 arXiv:1904.07358Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Andreas Bärtschi and Stephan Eidenbenz. 2022. Short-Depth Circuits for Dicke State Preparation. In IEEE International Conference on Quantum Computing & Engineering QCE'22. arXiv:2207.09998 To appear.Google ScholarGoogle Scholar
  6. Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open quantum assembly language. arXiv preprint (2017). arXiv:1707.03429Google ScholarGoogle Scholar
  7. Cruz, Diogo and Fournier, Romain and Gremion, Fabien and Jeannerot, Alix and Komagata, Kenichi and Tosic, Tara and Thiesbrummel, Jarla and Chan, Chun Lam and Macris, Nicolas and Dupertuis, Marc-André and Javerzac-Galy, Clément. 2019. Efficient Quantum Algorithms for GHZ and W States, and Implementation on the IBM Quantum Computer. Advanced Quantum Technologies 2, 5--6 (2019), 1900015. https://doi.org/10.1002/qute.201900015 arXiv:1807.05572Google ScholarGoogle ScholarCross RefCross Ref
  8. Andreas Elben, Steven T Flammia, Hsin-Yuan Huang, Richard Kueng, John Preskill, Benoît Vermersch, and Peter Zoller. 2022. The randomized measurement toolbox. arXiv preprint (2022). arXiv:2203.11374Google ScholarGoogle Scholar
  9. Steven T Flammia and Yi-Kai Liu. 2011. Direct fidelity estimation from few Pauli measurements. Physical Review Letters 106, 23 (2011), 230501. https://doi.org/10.1103/PhysRevLett.106.230501 arXiv:1104.4695Google ScholarGoogle ScholarCross RefCross Ref
  10. Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. Caltech Ph. D. Ph.D. Dissertation. Thesis, eprint. arXiv:quant-ph/9705052Google ScholarGoogle Scholar
  11. Otfried Gühne, Chao-Yang Lu, Wei-Bo Gao, and Jian-Wei Pan. 2007. Toolbox for entanglement detection and fidelity estimation. Physical Review A 76, 3 (2007), 030305. https://doi.org/10.1103/PhysRevA.76.030305 arXiv:0706.2432Google ScholarGoogle ScholarCross RefCross Ref
  12. Xinhe Jiang, Kun Wang, Kaiyi Qian, Zhaozhong Chen, Zhiyu Chen, Liangliang Lu, Lijun Xia, Fangmin Song, Shining Zhu, and Xiaosong Ma. 2020. Towards the standardization of quantum state verification using optimal strategies. npj Quantum Information 6, 1 (2020), 1--8. https://doi.org/10.1038/s41534-020-00317-7 arXiv:2002.00640Google ScholarGoogle ScholarCross RefCross Ref
  13. Richard Jozsa. 1994. Fidelity for mixed quantum states. Journal of Modern Optics 41, 12 (1994), 2315--2323.Google ScholarGoogle ScholarCross RefCross Ref
  14. Zihao Li, Yun-Guang Han, and Huangjun Zhu. 2019. Efficient verification of bipartite pure states. Physical Review A 100, 3 (2019), 032316. https://doi.org/10.1103/PhysRevA.100.032316 arXiv:1901.09783Google ScholarGoogle ScholarCross RefCross Ref
  15. Zihao Li, Yun-Guang Han, and Huangjun Zhu. 2020. Optimal verification of greenberger-horne-zeilinger states. Physical Review Applied 13, 5 (2020), 054002. https://doi.org/10.1103/PhysRevApplied.13.054002 arXiv:1909.08979Google ScholarGoogle ScholarCross RefCross Ref
  16. Ye-Chao Liu, Xiao-Dong Yu, Jiangwei Shang, Huangjun Zhu, and Xiangdong Zhang. 2019. Efficient verification of Dicke states. Physical Review Applied 12, 4 (2019), 044020. https://doi.org/10.1103/PhysRevApplied.12.044020arXiv:1904.01979Google ScholarGoogle ScholarCross RefCross Ref
  17. Chandra Sekhar Mukherjee, Subhamoy Maitra, Vineet Gaurav, and Dibyendu Roy. 2020. Preparing Dicke States on a Quantum Computer. IEEE Transactions on Quantum Engineering 1 (2020), 1--17. https://doi.org/10.1109/TQE.2020.3041479Google ScholarGoogle ScholarCross RefCross Ref
  18. Michael A. Nielsen and Isaac L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sam Pallister, Noah Linden, and Ashley Montanaro. 2018. Optimal verification of entangled states with local measurements. Physical Review Letters 120, 17 (2018), 170502. https://doi.org/10.1103/PhysRevLett.120.170502 arXiv:1709.03353Google ScholarGoogle ScholarCross RefCross Ref
  20. Rolando D Somma, John Chiaverini, and Dana J Berkeland. 2006. Lower bounds for the fidelity of entangled-state preparation. Physical Review A 74, 5 (2006), 052302. https://doi.org/10.1103/PhysRevA.74.052302 arXiv:quant-ph/0606023Google ScholarGoogle ScholarCross RefCross Ref
  21. Yuuki Tokunaga, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto. 2006. Fidelity estimation and entanglement verification for experimentally produced four-qubit cluster states. Physical Review A 74, 2 (2006), 020301. https://doi.org/10.1103/PhysRevA.74.020301Google ScholarGoogle ScholarCross RefCross Ref
  22. Kun Wang and Masahito Hayashi. 2019. Optimal verification of two-qubit pure states. Physical Review A 100, 3 (2019), 032315. https://doi.org/10.1103/PhysRevA.100.032315 arXiv:1901.09467Google ScholarGoogle ScholarCross RefCross Ref
  23. Xiao-Dong Yu, Jiangwei Shang, and Otfried Gühne. 2019. Optimal verification of general bipartite pure states. npj Quantum Information 5, 1 (2019), 1--5. https://doi.org/10.1038/s41534-019-0226-z arXiv:1901.09856Google ScholarGoogle ScholarCross RefCross Ref
  24. Wen-Hao Zhang, Chao Zhang, Zhe Chen, Xing-Xiang Peng, Xiao-Ye Xu, Peng Yin, Shang Yu, Xiang-Jun Ye, Yong-Jian Han, Jin-Shi Xu, et al. 2020. Experimental optimal verification of entangled states using local measurements. Physical Review Letters 125, 3 (2020), 030506. https://doi.org/10.1103/PhysRevLett.125.030506 arXiv:1905.12175Google ScholarGoogle ScholarCross RefCross Ref
  25. Xiaoqian Zhang, Maolin Luo, Zhaodi Wen, Qin Feng, Shengshi Pang, Weiqi Luo, and Xiaoqi Zhou. 2021. Direct fidelity estimation of quantum states using machine learning. Physical Review Letters 127, 13 (2021), 130503. https://doi.org/10.1103/PhysRevLett.127.130503 arXiv:2102.02369Google ScholarGoogle ScholarCross RefCross Ref
  26. Huangjun Zhu and Masahito Hayashi. 2019. Efficient verification of hypergraph states. Physical Review Applied 12, 5 (2019), 054047. https://doi.org/10.1103/PhysRevApplied.12.054047 arXiv:1806.05565Google ScholarGoogle ScholarCross RefCross Ref
  27. Huangjun Zhu and Masahito Hayashi. 2019. Efficient verification of pure quantum states in the adversarial scenario. Physical Review Letters 123, 26 (2019), 260504. https://doi.org/10.1038/s41534-021-00455-6 arXiv:1909.01900Google ScholarGoogle ScholarCross RefCross Ref
  28. Huangjun Zhu and Masahito Hayashi. 2019. General framework for verifying pure quantum states in the adversarial scenario. Physical Review A 100, 6 (2019), 062335. https://doi.org/10.1103/PhysRevA.100.062335 arXiv:1909.01943Google ScholarGoogle ScholarCross RefCross Ref
  29. Huangjun Zhu and Masahito Hayashi. 2019. Optimal verification and fidelity estimation of maximally entangled states. Physical Review A 99, 5 (2019), 052346. https://doi.org/10.1103/PhysRevA.99.052346 arXiv:1901.09772Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Scalable Experimental Bounds for Dicke and GHZ States Fidelities

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CF '23: Proceedings of the 20th ACM International Conference on Computing Frontiers
        May 2023
        419 pages
        ISBN:9798400701405
        DOI:10.1145/3587135

        Copyright © 2023 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 4 August 2023

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        CF '23 Paper Acceptance Rate24of66submissions,36%Overall Acceptance Rate240of680submissions,35%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader