skip to main content
10.1145/3585088.3589377acmconferencesArticle/Chapter ViewAbstractPublication PagesidcConference Proceedingsconference-collections
research-article
Open Access

"Look at Our Smart Shoe" - a Scalable Online Concept for Introducing Design as Part of Computational Thinking in Grades 1-6

Published:19 June 2023Publication History

ABSTRACT

While programming is a process covering many stages, many of the tasks K-12 students meet at school are small with little need for, e.g., analysis or design. These earlier phases are, however, important to let children meet open-ended problems, brainstorm solutions and ideate their own creative designs. In this paper we present a model for an online, scalable and scaffolded design workshop for covering such aspects at K-12 level. Through a case study with 1200 students and 60 teachers on IoT and smart things, we describe the workshop and the resulting designs. While the students managed to design their own artifacts, more time had been needed for covering ethical aspects related to technology design. The results suggest creating separate workshops for different grade levels, and also for design and ethical aspects respectively. Moreover, additional resources could support teachers in continuing the discussion with the students after the workshop.

References

  1. Anja Balanskat and Katja Engelhardt. 2015. Computing our future. Computer programming and coding. Priorities, school curricula and initiatives across Europe.Google ScholarGoogle Scholar
  2. Valerie Barr and Chris Stephenson. 2011. Bringing Computational Thinking to K-12: What is Involved and What is the Role of the Computer Science Education Community?ACM Inroads 2, 1 (feb 2011), 48–54. https://doi.org/10.1145/1929887.1929905Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Bocconi, A. Chioccariello, P. Kampylis, V. Dagienė, P. Wastiau, K. Engelhardt, J. Earp, M.A. Horvath, E. Jasutė, C. Malagoli, V. Masiulionytė-Dagienė, and G. Stupurienė. 2022. Reviewing Computational Thinking in Compulsory Education. https://doi.org/10.2760/126955Google ScholarGoogle Scholar
  4. Karen Brennan and Mitch Resnick. 2012. New Frameworks for Studying and Assessing the Development of Computational Thinking. In Proceedings of the 2012 Annual Meeting of the American Educational Research Association, Vol. 1. American Educational Research Association, Vancouver, British Columbia, Canada. http://scratched.gse.harvard.edu/ct/files/AERA2012.pdfGoogle ScholarGoogle Scholar
  5. "Design Counsil". 2021. What is the framework for innovation? Design Council’s evolved Double Diamond.Google ScholarGoogle Scholar
  6. CSTA and ISTE. 2011. Computational Thinking, Leadership Toolkit. https://cdn.iste.org/www-root/2020-10/ISTE_CT_Leadership_Toolkit_booklet.pdfGoogle ScholarGoogle Scholar
  7. Peter J. Denning and Matti Tedre. 2021. Computational Thinking: A Disciplinary Perspective. Informatics in Education 20, 3 (2021), 361–390. https://doi.org/10.15388/infedu.2021.21Google ScholarGoogle Scholar
  8. Christian Dindler, Rachel Smith, and Ole Sejer Iversen. 2020. Computational empowerment: participatory design in education. CoDesign 16, 1 (2020), 66–80. https://doi.org/10.1080/15710882.2020.1722173 arXiv:https://doi.org/10.1080/15710882.2020.1722173Google ScholarGoogle ScholarCross RefCross Ref
  9. Daniella DiPaola, Blakeley H. Payne, and Cynthia Breazeal. 2020. Decoding Design Agendas: An Ethical Design Activity for Middle School Students. In Proceedings of the Interaction Design and Children Conference (London, United Kingdom) (IDC ’20). Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/3392063.3394396Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Monica Divitini, Michail N. Giannakos, Simone Mora, Sofia Papavlasopoulou, and Ole Sejer Iversen. 2017. Make2Learn with IoT: Engaging Children into Joyful Design and Making of Interactive Connected Objects. In Proceedings of the 2017 Conference on Interaction Design and Children (Stanford, California, USA) (IDC ’17). Association for Computing Machinery, New York, NY, USA, 757–760. https://doi.org/10.1145/3078072.3081312Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Allison Druin. 1999. Cooperative Inquiry: Developing New Technologies for Children with Children. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for Computing Machinery, New York, NY, USA, 592–599. https://doi.org/10.1145/302979.303166Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Allison Druin. 2002. The role of children in the design of new technology. Behaviour and Information Technology 21, 1 (2002), 1 – 25. https://doi.org/10.1080/01449290110108659 Cited by: 930.Google ScholarGoogle ScholarCross RefCross Ref
  13. Finnish National Agency for Education. 2014. Perusopetuksen opetussuunnitelman perusteet 2014. https://www.oph.fi/sites/default/files/documents/perusopetuksen_opetussuunnitelman_perusteet_2014.pdfGoogle ScholarGoogle Scholar
  14. R. Franzosi. 2004. Content analysis. In The Sage encyclopedia of social science research methods: Vol 1, M. Lewis-Beck, A. Bryman, and T.F. Liao (Eds.). Thousand Oaks, CA: Sage. https://doi.org/10.4135/9781412950589Google ScholarGoogle Scholar
  15. Rosella Gennari, Maristella Matera, Alessandra Melonio, Mehdi Rizvi, and Eftychia Roumelioti. 2022. The evolution of a toolkit for smart-thing design with children through action research. International Journal of Child-Computer Interaction 31 (2022), 100359. https://doi.org/10.1016/j.ijcci.2021.100359Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Rosella Gennari, Alessandra Melonio, and Mehdi Rizvi. 2022. From children’s ideas to prototypes for the internet of things: a case study of cross-generational end-user design. Behaviour & Information Technology 41, 15 (2022), 3281–3300. https://doi.org/10.1080/0144929X.2021.1979654 arXiv:https://doi.org/10.1080/0144929X.2021.1979654Google ScholarGoogle ScholarCross RefCross Ref
  17. Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. 2016. A Review of Models for Introducing Computational Thinking, Computer Science and Computing in K-12 Education. In 2016 IEEE Frontiers in Education Conference (FIE). IEEE Press, Eire, PA, USA, 1–9. https://doi.org/10.1109/FIE.2016.7757410Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. O.R. Hosti. 1969. Content analysis for the social sciences and humanities. Reading, MA: Addison-Wesley.Google ScholarGoogle Scholar
  19. Netta Iivari and Marianne Kinnula. 2016. Inclusive or Inflexible: A Critical Analysis of the School Context in Supporting Children’s Genuine Participation. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction (Gothenburg, Sweden) (NordiCHI ’16). Association for Computing Machinery, New York, NY, USA, Article 63, 10 pages. https://doi.org/10.1145/2971485.2971531Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Informatics Europe and ACM Europe. 2015. Informatics in Education: Europe Cannot Afford to Miss the Boat. Report of the joint Informatics Europe and ACM Europe Working Group on Informatics Education..Google ScholarGoogle Scholar
  21. ISTE. 2016. ISTE Standards for Students. https://www.iste.org/standards/for-studentsGoogle ScholarGoogle Scholar
  22. Ole Sejer Iversen, Rachel Charlotte Smith, and Christian Dindler. 2017. Child as Protagonist: Expanding the Role of Children in Participatory Design. In Proceedings of the 2017 Conference on Interaction Design and Children (Stanford, California, USA) (IDC ’17). Association for Computing Machinery, New York, NY, USA, 27–37. https://doi.org/10.1145/3078072.3079725Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ole Sejer Iversen, Rachel Charlotte Smith, and Christian Dindler. 2018. From Computational Thinking to Computational Empowerment: A 21st Century PD Agenda. In Proceedings of the 15th Participatory Design Conference: Full Papers - Volume 1 (Hasselt and Genk, Belgium) (PDC ’18). Association for Computing Machinery, New York, NY, USA, Article 7, 11 pages. https://doi.org/10.1145/3210586.3210592Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sharin Rawhiya Jacob and Mark Warschauer. 2018. Computational Thinking and Literacy. Journal of Computer Science Integration 1, 1 (2018). https://doi.org/10.26716/jcsi2018.01.1.1Google ScholarGoogle ScholarCross RefCross Ref
  25. Vera John-Steiner and Holbrook Mahn. 1996. Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist 31, 3-4 (1996), 191–206. https://doi.org/10.1080/00461520.1996.9653266 arXiv:https://doi.org/10.1080/00461520.1996.9653266Google ScholarGoogle ScholarCross RefCross Ref
  26. Yasmin Kafai, Chris Proctor, and Debora Lui. 2020. From Theory Bias to Theory Dialogue: Embracing Cognitive, Situated, and Critical Framings of Computational Thinking in K-12 CS Education. ACM Inroads 11, 1 (feb 2020), 44–53. https://doi.org/10.1145/3381887Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Matin Mahboob Kanafi, Marianne Kinnula, and Netta Iivari. 2021. Re-defining Characteristics of a Design Protagonist – Elements of Children’s Design Capital. In Proceedings of the BCS 34th British HCI Conference 2021. https://doi.org/10.14236/ewic/HCI2021.24Google ScholarGoogle Scholar
  28. Magnus Høholt Kaspersen, Karl-Emil Kjær Bilstrup, Maarten Van Mechelen, Arthur Hjort, Niels Olof Bouvin, and Marianne Graves Petersen. 2022. High school students exploring machine learning and its societal implications: Opportunities and challenges. International Journal of Child-Computer Interaction 34 (2022), 100539. https://doi.org/10.1016/j.ijcci.2022.100539Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Marianne Kinnula, Netta Iivari, Tonja Molin-Juustila, Eino Keskitalo, Topi Leinonen, Eetu Mansikkamäki, Toni Käkelä, and Martti Similä. 2017. Cooperation, Combat, or Competence Building – What Do We Mean When We Are ‘Empowering Children’ in and through Digital Technology Design?. In ICIS 2017 Proceedings. https://aisel.aisnet.org/icis2017/TransformingSociety/Presentations/15Google ScholarGoogle Scholar
  30. Susanne Kjällander, Anna Åkerfeldt, Linda Mannila, and Peter Parnes. 2018. Makerspaces Across Settings: Didactic Design for Programming in Formal and Informal Teacher Education in the Nordic Countries. Journal of Digital Learning in Teacher Education 34, 1 (2018), 18–30. https://doi.org/10.1080/21532974.2017.1387831 arXiv:https://doi.org/10.1080/21532974.2017.1387831Google ScholarGoogle ScholarCross RefCross Ref
  31. Gerd Kortuem, Fahim Kawsar, Vasughi Sundramoorthy, and Daniel Fitton. 2010. Smart objects as building blocks for the Internet of things. IEEE Internet Computing 14, 1 (Jan 2010), 44–51. https://doi.org/10.1109/MIC.2009.143Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kung Jin Lee, Wendy Roldan, Tian Qi Zhu, Harkiran Kaur Saluja, Sungmin Na, Britnie Chin, Yilin Zeng, Jin Ha Lee, and Jason Yip. 2021. The Show Must Go On: A Conceptual Model of Conducting Synchronous Participatory Design With Children Online. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 345, 16 pages. https://doi.org/10.1145/3411764.3445715Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Theodore Lewis. 2009. Creativity in technology education: providing children with glimpses of their inventive potential. nternational Journal of Technology and Design Education 19 (2009), 255–268. https://doi.org/10.1007/s10798-008-9051-yGoogle ScholarGoogle Scholar
  34. Sonia Livingstone and Amanda Third. 2017. Children and young people’s rights in the digital age: An emerging agenda. New Media & Society 19, 5 (2017), 657–670. https://doi.org/10.1177/1461444816686318 arXiv:https://doi.org/10.1177/1461444816686318Google ScholarGoogle ScholarCross RefCross Ref
  35. Linda Mannila. 2021. Digital kompetens i Svenskfinland – nulägesanalys och goda modeller. https://www.kulturfonden.fi/wp-content/uploads/2021/01/Kulturfonden_DigitalKompetensiSvenskfinland_Mannila_2021.pdfGoogle ScholarGoogle Scholar
  36. Brenna McNally, Matthew Louis Mauriello, Mona Leigh Guha, and Allison Druin. 2017. Gains from Participatory Design Team Membership as Perceived by Child Alumni and Their Parents. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 5730–5741. https://doi.org/10.1145/3025453.3025622Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Brian Merriman and Suzanne Guerin. 2006. Using Children’s Drawings as Data in Child-Centred Research. The Irish Journal of Psychology 27, 1-2 (2006), 48–57. https://doi.org/10.1080/03033910.2006.10446227 arXiv:https://doi.org/10.1080/03033910.2006.10446227Google ScholarGoogle ScholarCross RefCross Ref
  38. Pekka Mertala. 2019. Young children’s conceptions of computers, code, and the Internet. International Journal of Child-Computer Interaction 19 (2019), 56–66. https://doi.org/10.1016/j.ijcci.2018.11.003Google ScholarGoogle ScholarCross RefCross Ref
  39. Nathan Holbert Mike Tissenbaum, David Weintrop and Tamara Clegg. 2021. The case for alternative endpoints in computing education. British Journal of Educational Technology 52, 3 (May 2021), 1164–1177. https://doi.org/10.1111/bjet.13072Google ScholarGoogle Scholar
  40. Simone Mora, Francesco Gianni, and Monica Divitini. 2017. Tiles: A Card-Based Ideation Toolkit for the Internet of Things. In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS ’17). Association for Computing Machinery, New York, NY, USA, 587–598. https://doi.org/10.1145/3064663.3064699Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Valerie Nesset and Andrew Large. 2004. Children in the information technology design process: A review of theories and their applications. Library & Information Science Research 26, 2 (2004), 140–161. https://doi.org/10.1016/j.lisr.2003.12.002Google ScholarGoogle ScholarCross RefCross Ref
  42. Ida Nilstad Pettersen and Casper Boks. 2008. The ethics in balancing control and freedom when engineering solutions for sustainable behaviour. International Journal of Sustainable Engineering 1, 4 (2008), 287–297. https://doi.org/10.1080/19397030802559607 arXiv:https://doi.org/10.1080/19397030802559607Google ScholarGoogle ScholarCross RefCross Ref
  43. Eftychia Roumelioti, Maria Angela Pellegrino, Mehdi Rizvi, Mauro D’Angelo, and Rosella Gennari. 2022. Smart-thing design by children at a distance: How to engage them and make them learn. International Journal of Child-Computer Interaction 33 (2022), 100482. https://doi.org/10.1016/j.ijcci.2022.100482Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Marie-Monique Schaper, Rachel Charlotte Smith, Mariana Aki Tamashiro, Maarten Van Mechelen, Mille Skovhus Lunding, Karl-Emil Kjæer Bilstrup, Magnus Høholt Kaspersen, Kasper Løvborg Jensen, Marianne Graves Petersen, and Ole Sejer Iversen. 2022. Computational empowerment in practice: Scaffolding teenagers’ learning about emerging technologies and their ethical and societal impact. International Journal of Child-Computer Interaction 34 (2022), 100537. https://doi.org/10.1016/j.ijcci.2022.100537Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Royal Society. 2017. After the reboot: computing education in UK schools.https://royalsociety.org/computing-educationGoogle ScholarGoogle Scholar
  46. E. Tanhua-Piiroinen, S-S. Kaarakainen, M-T. Kaarakainen, and J. Viteli. 2020. Digiajan peruskoulu II. Opetus- ja kulttuuriministeriön julkaisuja 2020:17.http://urn.fi/URN:ISBN:978-952-263-823-6Google ScholarGoogle Scholar
  47. Christina Tikva and Efthimios Tambouris. 2021. Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature Review. Computers & Education 162 (2021), 104083. https://doi.org/10.1016/j.compedu.2020.104083Google ScholarGoogle ScholarCross RefCross Ref
  48. Damyanka Tsvyatkova and Cristiano Storni. 2019. A review of selected methods, techniques and tools in Child–Computer Interaction (CCI) developed/adapted to support children’s involvement in technology development. International Journal of Child-Computer Interaction 22 (2019), 100148. https://doi.org/10.1016/j.ijcci.2019.100148Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Maarten Van Mechelen, Line Have Musaeus, Ole Sejer Iversen, Christian Dindler, and Arthur Hjorth. 2021. A Systematic Review of Empowerment in Child-Computer Interaction Research. In Interaction Design and Children (Athens, Greece) (IDC ’21). Association for Computing Machinery, New York, NY, USA, 119–130. https://doi.org/10.1145/3459990.3460701Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Maarten Van Mechelen, Rachel Charlotte Smith, Marie-Monique Schaper, Mariana Aki Tamashiro, Karl-Emil Kjær Bilstrup, Mille Skovhus Lunding, Marianne Graves Petersen, and Ole Sejer Iversen. 2022. Emerging Technologies in K–12 Education: A Future HCI Research Agenda. ACM Trans. Comput.-Hum. Interact. (oct 2022). https://doi.org/10.1145/3569897Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Leena Ventä-Olkkonen, Heidi Hartikainen, Behnaz Norouzi, Netta Iivari, and Marianne Kinnula. 2019. A Literature Review of the Practice of Educating Children About Technology Making. In Human-Computer Interaction – INTERACT 2019, David Lamas, Fernando Loizides, Lennart Nacke, Helen Petrie, Marco Winckler, and Panayiotis Zaphiris (Eds.). Springer International Publishing, Cham, 418–441.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Peter Vinnervik. 2022. Implementing programming in school mathematics and technology: teachers’ intrinsic and extrinsic challenges. Int J Technol Des Educ (2022), 213–242]. https://doi.org/10.1007/s10798-020-09602-0Google ScholarGoogle Scholar
  53. Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (mar 2006), 33–35. https://doi.org/10.1145/1118178.1118215Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Aman Yadav, Jon Good, Joke Voogt, and Petra Fisser. 2017. Computational Thinking as an Emerging Competence Domain. In Competence-based Vocational and Professional Education: Bridging the Worlds of Work and Education, Martin Mulder (Ed.). Springer International Publishing, Cham, 1051–1067. https://doi.org/10.1007/978-3-319-41713-4_49Google ScholarGoogle Scholar

Index Terms

  1. "Look at Our Smart Shoe" - a Scalable Online Concept for Introducing Design as Part of Computational Thinking in Grades 1-6

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          IDC '23: Proceedings of the 22nd Annual ACM Interaction Design and Children Conference
          June 2023
          824 pages
          ISBN:9798400701313
          DOI:10.1145/3585088

          Copyright © 2023 Owner/Author

          This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 June 2023

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate172of578submissions,30%

          Upcoming Conference

          IDC '24
          Interaction Design and Children
          June 17 - 20, 2024
          Delft , Netherlands
        • Article Metrics

          • Downloads (Last 12 months)176
          • Downloads (Last 6 weeks)31

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format