skip to main content
10.1145/3583133.3596414acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

A distributed multi-disciplinary design optimization benchmark test suite with constraints and multiple conflicting objectives

Published:24 July 2023Publication History

ABSTRACT

Collaborative optimization (CO) is an architecture within the multi-disciplinary design optimization (MDO) paradigm that partitions a constrained optimization problem into system and subsystem problems, with couplings between them. Multi-objective CO has multiple objectives at the system level and inequality constraints at the subsystem level. Whilst CO is an established technique, there are currently no scalable, constrained benchmark problems for multi-objective CO. In this study, we extend recent methods for generating scalable MDO benchmarks to propose a new benchmark test suite for multi-objective CO that is scalable in disciplines and variables, called 'CO-ZDT'. We show that overly-constraining the number of generations in each iteration of the system-level optimizer leads to poor consistency constraint satisfaction. Increasing the number of subsystems in each of the problems leads to increasing system-level constraint violation. In problems with two subsystems, we find that convergence to the global Pareto front is very sensitive to the complexity of the landscape of the original non-decomposed problem. As the number of subsystems increases, convergence issues are encountered even for the simpler problem landscapes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Natalia Alexandrov and Robert Lewis. 2000. Comparative Properties Of Collaborative Optimization And Other Approaches To Mdo. ASMO UK/ISSMO conference on engineering design optimization (03 2000).Google ScholarGoogle Scholar
  2. J. Blank and K. Deb. 2020. pymoo: Multi-Objective Optimization in Python. IEEE Access 8 (2020), 89497--89509.Google ScholarGoogle ScholarCross RefCross Ref
  3. Robert D. Braun, Peter Gage, I. M. Kroo, and I Sobiesiki. 1996. Implementation and Performance Issues in Collaborative Optimization (6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization). 295--305. Google ScholarGoogle ScholarCross RefCross Ref
  4. Dimo Brockhoff, Anne Auger, Nikolaus Hansen, and Tea Tušar. 2022. Using Well-Understood Single-Objective Functions in Multiobjective Black-Box Optimization Test Suites. Evolutionary Computation 30, 2 (06 2022), 165--193. arXiv:https://direct.mit.edu/evco/article-pdf/30/2/165/2025995/evco_a_00298.pdf Google ScholarGoogle ScholarCross RefCross Ref
  5. Timothy Cormier, Andrew Scott, Laura Ledsinger, David McCormick, David Way, and John Olds. 2012. Comparison of collaborative optimization to conventional design techniques for a conceptual RLV. In 8th Symposium on Multidisciplinary Analysis and Optimization. arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2000-4885 Google ScholarGoogle ScholarCross RefCross Ref
  6. Evin J. Cramer, J. E. Dennis, Jr., Paul D. Frank, Robert Michael Lewis, and Gregory R. Shubin. 1994. Problem Formulation for Multidisciplinary Optimization. SIAM Journal on Optimization 4, 4 (1994), 754--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182--197. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2005. Scalable Test Problems for Evolutionary Multiobjective Optimization. Springer London, London, 105--145. Google ScholarGoogle ScholarCross RefCross Ref
  9. Joao Duro, Yiming Yan, Robin Purshouse, and Peter Fleming. 2018. Collaborative Multi-Objective Optimization for Distributed Design of Complex Products. GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference, 625--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yang Fan and Bouchlaghem Dino. 2010. Genetic Algorithm-Based Multiobjective Optimization for Building Design. Architectural Engineering and Design Management 6, 1 (2010), 68--82. arXiv:https://doi.org/10.3763/aedm.2008.0077 Google ScholarGoogle ScholarCross RefCross Ref
  11. Michael Farnsworth, Ashutosh Tiwari, Meiling Zhu, and Elhadj Benkhelifa. 2018. A Multi-objective and Multidisciplinary Optimisation Algorithm for Microelectromechanical Systems. Springer International Publishing, Cham, 205--238. Google ScholarGoogle ScholarCross RefCross Ref
  12. S Gunawan, S Azarm, J Wu, and A Boyars. 2003. Quality-Assisted Multi-Objective Multidisciplinary Genetic Algorithms. AIAA journal 41, 9 (2003), 1752--1762.Google ScholarGoogle ScholarCross RefCross Ref
  13. Chen-Hung Huang. 2003. Development of Multi-Objective Concurrent Sub-space Optimization and Visualization Methods for Multidisciplinary Design. Ph. D. Dissertation. Buffalo, NY: State University of New York at Buffalo.Google ScholarGoogle Scholar
  14. Chen-Hung Huang and Christina Bloebaum. 2004. Incorporation of Preferences in Multi-Objective Concurrent Subspace Optimization for Multidisciplinary Design. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2004-4548 Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Huband, P. Hingston, L. Barone, and L. While. 2006. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10, 5 (2006), 477--506. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. V. Johnson, J. A. Duro, V. Kadirkamanathan, and R. C. Purhouse. 2022. Toward scalable benchmark problems for multi-objective multidisciplinary optimization. In Proceedings of the 2022 IEEE Symposium Series On Computational Intelligence (IEEE SSCI). 133--140.Google ScholarGoogle Scholar
  17. V. Johnson, J. A. Duro, V. Kadirkamanathan, and R. C. Purhouse. 2023. A scalable test suite for bi-objective multidisciplinary optimisation. In Proceedings of the 2023 International Conference Series on Evolutionary Multi-Criterion Optimization (EMO). 319--332.Google ScholarGoogle Scholar
  18. Kathrin Klamroth, Sanaz Mostaghim, Boris Naujoks, Silvia Poles, Robin Purshouse, Günter Rudolph, Stefan Ruzika, Serpil Sayın, Margaret M. Wiecek, and Xin Yao. 2017. Multiobjective optimization for interwoven systems. Journal of Multi-Criteria Decision Analysis 24, 1--2 (2017), 71--81. Google ScholarGoogle ScholarCross RefCross Ref
  19. Andrew B. Lambe and Joaquim R. R. A. Martins. 2012. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimization 46, 2 (01 Aug 2012), 273--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Haiyan Li, Mingxu Ma, and Wenlei Zhang. 2016. Multi-objective collaborative optimization using linear physical programming with dynamic weight. Journal of Mechanical Science and Technology 30, 2 (01 Feb 2016), 763--770. Google ScholarGoogle ScholarCross RefCross Ref
  21. Joaquim R. R. A. Martins and Andrew B. Lambe. 2013. Multidisciplinary Design Optimization: A Survey of Architectures. AIAA Journal 51, 9 (2013), 2049--2075. Google ScholarGoogle ScholarCross RefCross Ref
  22. Charles D. McAllister and Timothy W. Simpson. 2003. Multidisciplinary Robust Design Optimization of an Internal Combustion Engine. Journal of Mechanical Design 125, 1 (2003), 124--130. Google ScholarGoogle ScholarCross RefCross Ref
  23. C. D. McAllister, T. W. Simpson, K. Hacker, K. Lewis, and A. Messac. 2005. Integrating linear physical programming within collaborative optimization for multiobjective multidisciplinary design optimization. Structural and Multidisciplinary Optimization 29, 3 (01 Mar 2005), 178--189. Google ScholarGoogle ScholarCross RefCross Ref
  24. Petra Meier, Robin Purshouse, Marion Bain, Clare Bambra, Richard Bentall, Mark Birkin, John Brazier, Alan Brennan, Mark Bryan, Julian Cox, et al. 2019. The SIPHER Consortium: Introducing the new UK hub for systems science in public health and health economic research. Wellcome Open Research 4, 174 (2019). Google ScholarGoogle ScholarCross RefCross Ref
  25. Sharon Padula, Natalia Alex, Lawrence Green, and Natalia Alexandrov. 1996. MDO Test Suite At Nasa Langley Research Center. (Sep 1996). Google ScholarGoogle ScholarCross RefCross Ref
  26. Sumeet Parashar and Christina Bloebaum. 2006. Multi-Objective Genetic Algorithm Concurrent Subspace Optimization (MOGACSSO) for Multidisciplinary Design. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 8. Google ScholarGoogle ScholarCross RefCross Ref
  27. Sébastien Rabeau, Philippe Dépincé, and Fouad Bennis. 2007. Collaborative optimization of complex systems: a multidisciplinary approach. International Journal on Interactive Design and Manufacturing (IJIDeM) 1, 4 (01 Nov 2007), 209--218. Google ScholarGoogle ScholarCross RefCross Ref
  28. R. Sellar, S. Batill, and J. Renaud. 1996. Response surface based, concurrent subspace optimization for multidisciplinary system design. In 34th Aerospace Sciences Meeting and Exhibit. 96--0714. Google ScholarGoogle ScholarCross RefCross Ref
  29. Ravindra V. Tappeta and John E. Renaud. 1997. Multiobjective Collaborative Optimization (International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. Volume 2: 23rd Design Automation Conference). 403--411. arXiv:https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/DETC97/80449/V002T29A017/6640325/v002t29a017-detc97-dac-3772.pdfV002T29A017. Google ScholarGoogle ScholarCross RefCross Ref
  30. Nathan P. Tedford and Joaquim R. R. A. Martins. 2010. Benchmarking multidisciplinary design optimization algorithms. Optimization and Engineering 11 (2010), 159--183. Google ScholarGoogle ScholarCross RefCross Ref
  31. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261--272. Google ScholarGoogle ScholarCross RefCross Ref
  32. Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 2 (2000), 173--195. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A distributed multi-disciplinary design optimization benchmark test suite with constraints and multiple conflicting objectives

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
        July 2023
        2519 pages
        ISBN:9798400701207
        DOI:10.1145/3583133

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 July 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia
      • Article Metrics

        • Downloads (Last 12 months)42
        • Downloads (Last 6 weeks)1

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader