skip to main content
10.1145/3572921.3572953acmotherconferencesArticle/Chapter ViewAbstractPublication PagesozchiConference Proceedingsconference-collections
short-paper

Investigating User Risk Attitudes in Navigation Systems to Support People with Mobility Impairments

Published:06 April 2023Publication History

ABSTRACT

This paper investigates the impact of visualizing the risk of encountering potential accessibility barriers on the route planning behaviour of pedestrians with mobility impairments. Using a prototype system, we explored the relationship between the risk of facing possible accessibility barriers and the navigation planning behaviour of the mobility impaired users. We found that mobility impaired users had a very strong inclination towards longer but accessible barrier-free routes instead of shorter potentially inaccessible routes (being willing to travel over 900 metres to avoid barriers), suggesting a degree of risk aversion that goes beyond the literature. However, we have also observed users’ varying risk attitudes towards obstacles based on the type of impairments, mobility aids, and individual perceptions and mobility preferences. Our investigation underscores the importance of presenting risk information, which is currently overlooked in accessible navigation systems.

References

  1. Ahmed, M., Adil, M., & Latif, S. (2015, December). Web application prototype: State-of-art survey evaluation. In 2015 National Software Engineering Conference (NSEC) (pp. 19-24). IEEE. https://doi.org/10.1109/NSEC.2015.7396339Google ScholarGoogle ScholarCross RefCross Ref
  2. Barczyszyn, G. L., Camenar, L. M. D. O., Nascimento, D. D. F. D., Kozievitch, N. P., Silva, R. D. D., Almeida, L. D., ... & Minetto, R. (2018). A collaborative system for suitable wheelchair route planning. ACM Transactions on Accessible Computing (TACCESS), 11(3), 1-26. https://doi.org/10.1145/3237186Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beale, L., Field, K., Briggs, D., Picton, P., & Matthews, H. (2006). Mapping for wheelchair users: Route navigation in urban spaces. The Cartographic Journal, 43(1), 68-81. https://doi.org/10.1179/000870406X93517Google ScholarGoogle ScholarCross RefCross Ref
  4. Blissett, R. (2017, November). RPubs - Logistic, Ordinal, and Multinomial Regression in R. Rpubs.com. Retrieved 24 November 2021, from https://rpubs.com/rslbliss/r_logistic_ws.Google ScholarGoogle Scholar
  5. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oaGoogle ScholarGoogle ScholarCross RefCross Ref
  6. Brock, A., Truillet, P., Oriola, B., Picard, D., & Jouffrais, C. (2012, July). Design and user satisfaction of interactive maps for visually impaired people. In Computers Helping People with Special Needs (pp. 544–551). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31534-3_80Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brock, A. M., Truillet, P., Oriola, B., Picard, D., & Jouffrais, C. (2015). Interactivity improves usability of geographic maps for visually impaired people. Human–Computer Interaction, 30(2), 156-194. https://doi.org/10.1080/07370024.2014.924412Google ScholarGoogle ScholarCross RefCross Ref
  8. Bromley, R. D., Matthews, D. L., & Thomas, C. J. (2007). City centre accessibility for wheelchair users: The consumer perspective and the planning implications. Cities, 24(3), 229–241. https://doi.org/10.1016/j.cities.2007.01.009Google ScholarGoogle ScholarCross RefCross Ref
  9. Choudhury, A. (2015). Questionnaire Method of Data Collection : Advantages and Disadvantages. Retrieved from https://www.yourarticlelibrary.com/social-research/data-collection/questionnaire-method-of-data-collection-advantages-and-disadvantages/64512Google ScholarGoogle Scholar
  10. Ergun, E. (n.d.). User testing - 8 tips for using online surveys to test UX. Retrieved 20 October 2021, from https://marvelapp.com/blog/8-tips-for-using-online-surveys-for-user-testing/Google ScholarGoogle Scholar
  11. Escobar, L. (2015, July). The Most Effective Research Tools for Gathering Customer Feedback. Retrieved 20 October 2021, from https://www.mindtheproduct.com/tools-for-customer-feedback/Google ScholarGoogle Scholar
  12. Froehlich, J. E., Brock, A. M., Caspi, A., Guerreiro, J., Hara, K., Kirkham, R., ... & Tannert, B. (2019). Grand challenges in accessible maps. interactions, 26(2), 78-81.Google ScholarGoogle Scholar
  13. Froehlich, J. E., Saugstad, M., Saha, M., & Johnson, M. (2020). Towards Mapping and Assessing Sidewalk Accessibility Across Socio-cultural and Geographic Contexts. In AVI Workshop on Data4Good-Designing for Diversity and Development (To Appear) (Vol. 6).Google ScholarGoogle Scholar
  14. Glen, S. Poisson Distribution / Poisson Curve: Simple Definition. StatisticsHowTo.com: Statistics for the rest of us! Retrieved 5 November 2021, from https://www.statisticshowto.com/probability-and-statistics/statistics-definitions/probability-distribution/poisson-distribution/Google ScholarGoogle Scholar
  15. Gupta, M., Abdolrahmani, A., Edwards, E., Cortez, M., Tumang, A., Majali, Y., ... & Branham, S. M. (2020, April). Towards More Universal Wayfinding Technologies: Navigation Preferences Across Disabilities. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-13).Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hara, K., Azenkot, S., Campbell, M., Bennett, C. L., Le, V., Pannella, S., ... & Froehlich, J. E. (2015). Improving public transit accessibility for blind riders by crowdsourcing bus stop landmark locations with google street view: An extended analysis. ACM Transactions on Accessible Computing (TACCESS), 6(2), 1-23. https://doi.org/10.1145/2717513Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Harris, T. (2007). Why you need to use statistics in your research. Electronic document available at mheducation.co.uk.Google ScholarGoogle Scholar
  18. Hashemi, M., & Karimi, H. A. (2017). Collaborative personalized multi‐criteria wayfinding for wheelchair users in outdoors. Transactions in GIS, 21(4), 782–795. https://doi.org/10.1111/tgis.12230Google ScholarGoogle ScholarCross RefCross Ref
  19. How Fast Are Power Wheelchairs? Hoveround.com. (2013). Retrieved 5 November 2021, from https://www.hoveround.com/articles/how-fast-can-a-power-chair-goGoogle ScholarGoogle Scholar
  20. Inada, Y., Izumi, S., Koga, M., & Matsubara, S. (2014). Development of planning support system for welfare urban design–optimal route finding for wheelchair users. Procedia Environmental Sciences, 22, 61–69. https://doi.org/10.1016/j.proenv.2014.11.006Google ScholarGoogle ScholarCross RefCross Ref
  21. Iwarsson, S., & Ståhl, A. (2003). Accessibility, usability and universal design—positioning and definition of concepts describing person-environment relationships. Disability and Rehabilitation, 25(2), 57–66. https://doi.org/10.1080/dre.25.2.57.66Google ScholarGoogle ScholarCross RefCross Ref
  22. Iwasawa Y., Yairi I.E. (2012) Life-Logging of Wheelchair Driving on Web Maps for Visualizing Potential Accidents and Incidents. In: Anthony P., Ishizuka M., Lukose D. (eds) PRICAI 2012: Trends in Artificial Intelligence. PRICAI 2012. Lecture Notes in Computer Science, vol 7458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32695-0_16Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kaminski, L., & Bruniecki, K. (2012). Mobile navigation system for visually impaired users in the urban environment. Metrology and Measurement Systems, Xix(2), 245. doi:http://dx.doi.org/10.2478/v10178-012-0021-zGoogle ScholarGoogle ScholarCross RefCross Ref
  24. Kirkham, R., Ebassa, R., Montague, K., Morrissey, K., Vlachokyriakos, V., Weise, S., & Olivier, P. (2017, September). WheelieMap: an exploratory system for qualitative reports of inaccessibility in the built environment. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 1-12). https://doi.org/10.1145/3098279.3098527Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leaflet — an open-source JavaScript library for interactive maps. Retrieved from https://leafletjs.com/Google ScholarGoogle Scholar
  26. Matthews H, Beale L, Picton P, & Briggs D. (2003). Modelling Access with GIS in Urban Systems (MAGUS): capturing the experiences of wheelchair users. Area (London 1969), 35(1), 34–45. https://doi.org/10.1111/1475-4762.00108Google ScholarGoogle ScholarCross RefCross Ref
  27. Menkens, C, Sussmann, J, Al-Ali, M, Breitsameter, E, Frtunik, J, Nendel, T, & Schneiderbauer, T. (2011). EasyWheel - A Mobile Social Navigation and Support System for Wheelchair Users. 2011 Eighth International Conference on Information Technology: New Generations, (pp. 859-866). https://doi.org/10.1109/ITNG.2011.149Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mobasheri, A. (2017). A rule-based spatial reasoning approach for OpenStreetMap data quality enrichment; case study of routing and navigation. Sensors, 17(11), 2498. http://dx.doi.org/10.3390/s17112498Google ScholarGoogle ScholarCross RefCross Ref
  29. Mobasheri, A., Huang, H., Degrossi, L. C., & Zipf, A. (2018). Enrichment of OpenStreetMap data completeness with sidewalk geometries using data mining techniques. Sensors (Basel, Switzerland), 18(2), 509. https://doi.org/10.3390/s18020509Google ScholarGoogle ScholarCross RefCross Ref
  30. Mobasheri, A., Sun, Y., Loos, L., & Ali, A. L. (2017). Are crowdsourced datasets suitable for specialized routing services? Case study of OpenStreetMap for routing of people with limited mobility. Sustainability, 9(6), 997. https://doi.org/10.3390/su9060997Google ScholarGoogle ScholarCross RefCross Ref
  31. Mobasheri, A., Zipf, A., & Francis, L. (2018). OpenStreetMap data quality enrichment through awareness raising and collective action tools—experiences from a European project. Geo-Spatial Information Science, 21(3), 234–246. https://doi.org/10.1080/10095020.2018.1493817Google ScholarGoogle ScholarCross RefCross Ref
  32. Nivala, A. M., Brewster, S., & Sarjakoski, T. L. (2008). Usability evaluation of web mapping sites. Cartographic Journal, 45(2), 129–138. https://doi.org/10.1179/174327708X305120Google ScholarGoogle ScholarCross RefCross Ref
  33. OpenStreetMap. OpenStreetMap. Retrieved from https://www.openstreetmap.org/#map=5/-5.347/116.587Google ScholarGoogle Scholar
  34. Poisson Distribution. Itl.nist.gov. Retrieved 5 November 2021, from https://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htmGoogle ScholarGoogle Scholar
  35. Prémont, M. É., Vincent, C., & Mostafavi, M. A. (2019). Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users. Disability and Rehabilitation: Assistive Technology, 15(8), 844–855. https://doi.org/10.1080/17483107.2019.1620351Google ScholarGoogle ScholarCross RefCross Ref
  36. Prémont, M. É., Vincent, C., Mostafavi, M. A., & Routhier, F. (2019). Geospatial assistive technologies for wheelchair users: a scoping review of usability measures and criteria for mobile user interfaces and their potential applicability. Disability and Rehabilitation: Assistive Technology, 15(2), 119–131. https://doi.org/10.1080/17483107.2018.1539876Google ScholarGoogle ScholarCross RefCross Ref
  37. Qualtrics Insight Platform (intermediate surveys) | eSolutions. Monash.edu. Retrieved from https://www.monash.edu/esolutions/software/qualtrics-insight-platformGoogle ScholarGoogle Scholar
  38. Saha, M., Chauhan, D., Patil, S., Kangas, R., Heer, J., & Froehlich, J. E. (2020). Urban accessibility as a socio-political problem. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW3), 1–26. https://doi.org/10.1145/3432908Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Tannert, B., & Schöning, J. (2018). Disabled, but at what cost? In Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services, (pp. 1-7). https://doi.org/10.1145/3229434.3229458Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tannert, B., Kirkham, R., & Schöning, J. (2019). Analyzing accessibility barriers using cost-benefit analysis to design reliable navigation services for wheelchair users. In Human-Computer Interaction – INTERACT 2019 (pp. 202–223). Springer International Publishing. https://doi.org/10.1007/978-3-030-29381-9_13Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vaske, J. J. (2011). Advantages and disadvantages of internet surveys: Introduction to the special issue. Human Dimensions of Wildlife, 16(3), 149-153. https://doi.org/10.1080/10871209.2011.572143Google ScholarGoogle ScholarCross RefCross Ref
  42. Vincent, C., Girard, R., Dumont, F., Archambault, P., Routhier, F., & Mostafavi, M. A. (2020). Evaluation of satisfaction with geospatial assistive technology (ESGAT): a methodological and usability study. Disability and Rehabilitation: Assistive Technology, ahead-of-print(ahead-of-print), 1–18. https://doi.org/10.1080/17483107.2020.1768307Google ScholarGoogle ScholarCross RefCross Ref
  43. Völkel, T., & Weber, G. (2007, July). A new approach for pedestrian navigation for mobility impaired users based on multimodal annotation of geographical data. In Universal Access in Human-Computer Interaction. Ambient Interaction (pp. 575–584). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-73281-5_61Google ScholarGoogle ScholarCross RefCross Ref
  44. Völkel, T., & Weber, G. (2008, October). RouteCheckr: personalized multicriteria routing for mobility impaired pedestrians. In Proceedings of the 10th international ACM SIGACCESS conference on Computers and accessibility (pp. 185-192). https://doi.org/10.1145/1414471.1414506Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Völkel, T., Kühn, R., & Weber, G. (2008, July). Mobility impaired pedestrians are not cars: Requirements for the annotation of geographical data. In Computers Helping People with Special Needs (pp. 1085–1092). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-70540-6_163Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wheeler, B., Syzdykbayev, M., Karimi, H. A., Gurewitsch, R., & Wang, Y. (2020). Personalized accessible wayfinding for people with disabilities through standards and open geospatial platforms in smart cities. Open Geospatial Data, Software and Standards, 5(1), 1-15. Open Geospatial Data, Software and Standards, 5(1), 1–15. https://doi.org/10.1186/s40965-020-00075-5Google ScholarGoogle ScholarCross RefCross Ref
  47. Wisdom, J., & Creswell, J. W. (2013). Mixed methods: integrating quantitative and qualitative data collection and analysis while studying patient-centered medical home models. Rockville: Agency for Healthcare Research and Quality.Google ScholarGoogle Scholar
  48. World Health Organization. (2011). World report on disability 2011. World Health Organization.Google ScholarGoogle Scholar
  49. Zimmermann-Janschitz, S. (2018). Geographic Information Systems in the context of disabilities. Journal of Accessibility and Design for All, 8(2), 161-193. https://dx.doi.org/10.17411/jacces.v8i2.171Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Investigating User Risk Attitudes in Navigation Systems to Support People with Mobility Impairments
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Article Metrics

              • Downloads (Last 12 months)36
              • Downloads (Last 6 weeks)4

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format