skip to main content
survey

Human Movement Datasets: An Interdisciplinary Scoping Review

Authors Info & Claims
Published:07 December 2022Publication History
Skip Abstract Section

Abstract

Movement dataset reviews exist but are limited in coverage, both in terms of size and research discipline. While topic-specific reviews clearly have their merit, it is critical to have a comprehensive overview based on a systematic survey across disciplines. This enables higher visibility of datasets available to the research communities and can foster interdisciplinary collaborations. We present a catalogue of 704 open datasets described by 10 variables that can be valuable to researchers searching for secondary data: name and reference, creation purpose, data type, annotations, source, population groups, ordinal size of people captured simultaneously, URL, motion capture sensor, and funders. The catalogue is available in the supplementary materials. We provide an analysis of the datasets and further review them under the themes of human diversity, ecological validity, and data recorded. The resulting 12-dimension framework can guide researchers in planning the creation of open movement datasets. This work has been the interdisciplinary effort of researchers across affective computing, clinical psychology, disability innovation, ethnomusicology, human-computer interaction, machine learning, music cognition, music computing, and movement neuroscience.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. [1] Ahad Md Atiqur Rahman. 2014. Datasets for action, gesture and activity analysis. In 2nd International Conference on Intelligent Systems and Image Processing.Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Ahad Md Atiqur Rahman, Tan J., Kim H., and Ishikawa S.. 2011. Action dataset—A survey. In SICE Annual Conference. IEEE, 16501655.Google ScholarGoogle Scholar
  3. [3] AniAgeProjectdataset. (????). Traditional Dances Download. Retrieved from https://www.euh2020aniage.org/testthaidancedownload.Google ScholarGoogle Scholar
  4. [4] Auvinet Edouard, Multon Franck, Saint-Arnaud Alain, Rousseau Jacqueline, and Meunier Jean. 2010. Fall detection with multiple cameras: An occlusion-resistant method based on 3-D silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed. 15, 2 (2010), 290300.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Barbareschi Giulia and Ramirez D. Morgado. 2020. Supporting the voice of people with disabilities in Kenya, Uganda and Jordan. In Rethinking Giving Voice Workshop, Vol. 2020. Association for Computing Machinery.Google ScholarGoogle Scholar
  6. [6] Bardy Benoît G., Calabrese Carmela, Lellis Pietro De, Bourgeaud Stella, Colomer Clémentine, Pla Simon, and Bernardo Mario di. 2020. Moving in unison after perceptual interruption. Sci. Rep. 10, 1 (2020), 113.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Barrett Lisa Feldman. 2017. The theory of constructed emotion: An active inference account of interoception and categorization. Soc. Cog. Affect. Neurosci. 12, 1 (2017), 123.Google ScholarGoogle Scholar
  8. [8] Barrett Lisa Feldman and Simmons W. Kyle. 2015. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 7 (2015), 419429.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Bassett David R., Pucher John, Buehler Ralph, Thompson Dixie L., and Crouter Scott E.. 2008. Walking, cycling, and obesity rates in Europe, North America, and Australia. J. Phys. Activ. Health 5, 6 (2008), 795814.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Baumeister Roy F. and Leary Mark R.. 1995. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 3 (1995), 497.Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Bergamasco Massimo, Bardy Benoit, and Gopher Daniel. 2012. Skill Training in Multimodal Virtual Environments. CRC Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Bharadwaj Richa, Swaisaenyakorn Srijittra, Parini Clive G., Batchelor John C., and Alomainy Akram. 2017. Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications. IEEE Trans. Ant. Propag. 65, 12 (2017), 72987309.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Bianco Roberta, Novembre Giacomo, Keller Peter E., Villringer Arno, and Sammler Daniela. 2018. Musical genre-dependent behavioural and EEG signatures of action planning. A comparison between classical and jazz pianists. Neuroimage 169 (2018), 383394.Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Bieńkiewicz M. M. N., Smykovskyi Andrii, Olugbade Temitayo, Janaqi Stefan, Camurri Antonio, Bianchi-Berthouze Nadia, Björkman Mårten, and Bardy Benoît G.. 2021. Bridging the gap between emotion and joint action. Neurosci. Biobehav. Rev. (2021).Google ScholarGoogle Scholar
  15. [15] Cai Ziyun, Han Jungong, Liu Li, and Shao Ling. 2017. RGB-D datasets using Microsoft Kinect or similar sensors: A survey. Multim. Tools Applic. 76, 3 (2017), 43134355.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Cao Qiong, Shen Li, Xie Weidi, Parkhi Omkar M., and Zisserman Andrew. 2018. VGGFace2: A dataset for recognising faces across pose and age. In 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG’18). IEEE, 6774.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Cao Z., Martinez G. Hidalgo, Simon T., Wei S., and Sheikh Y. A.. 2019. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Patt. Anal. Mach. Intell. (2019).Google ScholarGoogle Scholar
  18. [18] Carrington Patrick, Chang Kevin, Mentis Helena, and Hurst Amy. 2015. “But, I don’t take steps.” Examining the inaccessibility of fitness trackers for wheelchair athletes. In 17th International ACM Conference on Computers & Accessibility. 193201.Google ScholarGoogle Scholar
  19. [19] Cavallo Andrea, Foster Nathan C., Balasubramanian Karthikeyan Kalyanasundaram, Merello Andrea, Zini Giorgio, Crepaldi Marco, and Becchio Cristina. 2021. A low-cost stand-alone platform for measuring motor behaviour across developmental applications. iScience (2021), 102742.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Chaquet Jose M., Carmona Enrique J., and Fernández-Caballero Antonio. 2013. A survey of video datasets for human action and activity recognition. Comput. Vis. Image Underst. 117, 6 (2013), 633659. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Cho Youngjun, Bianchi-Berthouze Nadia, and Julier Simon J.. 2017. DeepBreath: Deep learning of breathing patterns for automatic stress recognition using low-cost thermal imaging in unconstrained settings. In 7th International Conference on Affective Computing and Intelligent Interaction. IEEE, 456463.Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Clayton Martin, Jakubowski Kelly, Eerola Tuomas, Keller Peter E., Camurri Antonio, Volpe Gualtiero, and Alborno Paolo. 2020. Interpersonal entrainment in music performance: Theory, method, and model. Mus. Percept.: Interdisc. J. 38, 2 (2020), 136194.Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Clayton Martin, Leante Laura, and Tarsitani Simone. 2018. IEMP North Indian Raga. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Cook A., Mandal B., Berry D., and Johnson M.. 2019. Towards automatic screening of typical and atypical behaviors in children with autism. In IEEE International Conference on Data Science and Advanced Analytics (DSAA). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] De-La-Hoz-Franco Emiro, Ariza-Colpas Paola, Quero Javier Medina, and Espinilla Macarena. 2018. Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access 6 (2018), 5919259210.Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Miguel Koldo De, Brunete Alberto, Hernando Miguel, and Gambao Ernesto. 2017. Home camera-based fall detection system for the elderly. Sensors 17, 12 (2017), 2864.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Paolo Ezequiel A. Di, Cuffari Elena Clare, and Jaegher Hanne De. 2018. Linguistic Bodies: The Continuity between Life and Language. The MIT Press.Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Dreuw Philippe, Forster Jens, and Ney Hermann. 2010. Tracking benchmark databases for video-based sign language recognition. In European Conference on Computer Vision. Springer, 286297.Google ScholarGoogle Scholar
  29. [29] Dudzik Bernd, Jansen Michel Pierre, Burger Franziska, Kaptein Frank, Broekens Joost, Heylen Dirk K. J., Hung Hayley, Neerincx Mark A., and Truong Khiet P.. 2019. Context in human emotion perception for automatic affect detection: A survey of audiovisual databases. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] D’Ausilio Alessandro, Novembre Giacomo, Fadiga Luciano, and Keller Peter E.. 2015. What can music tell us about social interaction? Trends. Cog. Sci. 19, 3 (2015), 111114.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Edwards Michael, Deng Jingjing, and Xie Xianghua. 2016. From pose to activity: Surveying datasets and introducing CONVERSE. Comput. Vis. Image Underst. 144 (2016), 73105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Emerson Robert Wall. 2015. Convenience sampling, random sampling, and snowball sampling: How does sampling affect the validity of research? J.Vis. Impair. Blind. 109, 2 (2015), 164168.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Firman Michael. 2016. RGBD datasets: Past, present and future. In IEEE Conference on Computer Vision and Pattern Recognition Workshops. 1931.Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Gallese Vittorio. 2007. Before and below “theory of mind”: Embodied simulation and the neural correlates of social cognition. Philos. Trans. Roy. Societ. B: Biol. Sci. 362, 1480 (2007), 659669. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Gebru Timnit, Morgenstern Jamie, Vecchione Briana, Vaughan Jennifer Wortman, Wallach Hanna, Daumé Hal, and Crawford Kate. 2018. Datasheets for datasets. arXiv (2018).Google ScholarGoogle Scholar
  36. [36] Georgopoulos Apostolos P.. 2000. Neural aspects of cognitive motor control. Curr. Opin. Neurobiol. 10, 2 (2000), 238241.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Gerling Kathrin and Spiel Katta. 2021. A critical examination of virtual reality technology in the context of the minority body. In CHI Conference on Human Factors in Computing Systems. 114.Google ScholarGoogle Scholar
  38. [38] Gold Nicolas E. and Krinke Jens. 2022. Ethics in the mining of software repositories. Empir. Softw. Eng. 27, 1 (2022), 149.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Gong Weikang, Beckmann Christian F., and Smith Stephen M.. 2021. Phenotype discovery from population brain imaging. Med. Image Anal. 71 (2021), 102050.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Gu Chunhui, Sun Chen, Ross David A., Vondrick Carl, Pantofaru Caroline, Li Yeqing, Vijayanarasimhan Sudheendra, Toderici George, Ricco Susanna, Sukthankar Rahul, et al. 2018. AVA: A video dataset of spatio-temporally localized atomic visual actions. In IEEE Conference on Computer Vision and Pattern Recognition. 60476056.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Gunes Hatice and Piccardi Massimo. 2006. Creating and annotating affect databases from face and body display: A contemporary survey. In IEEE International Conference on Systems, Man and Cybernetics, Vol. 3. 24262433. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Gunes Hatice, Shan Caifeng, Chen Shizhi, and Tian YingLi. 2015. Bodily expression for automatic affect recognition. Emot. Recog.: Patt. Anal. Appr. (2015), 343377.Google ScholarGoogle Scholar
  43. [43] Hassner Tal. 2013. A critical review of action recognition benchmarks. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. 245250. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] He Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian. 2016. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition. 770778.Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Henrich Joseph, Heine Steven J., and Norenzayan Ara. 2010. The weirdest people in the world? Behav. Brain Sci. 33, 2-3 (2010), 6183.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Hulteen Ryan M., Smith Jordan J., Morgan Philip J., Barnett Lisa M., Hallal Pedro C., Colyvas Kim, and Lubans David R.. 2017. Global participation in sport and leisure-time physical activities: A systematic review and meta-analysis. Prevent. Med. 95 (2017), 1425.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Iacoboni Marco, Molnar-Szakacs Istvan, Gallese Vittorio, Buccino Giovanni, and Mazziotta John C.. 2005. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biol. 3, 3 (2005), 05290535. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] INVOLVE. 2015. Public Involvement in Research: Values and Principles Framework. Technical Report.Google ScholarGoogle Scholar
  49. [49] Jure Luis, Rocamora Martín, Tarsitani Simone, and Clayton Martin. 2018. IEMP Uruguayan Candombe. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Karg Michelle, Samadani Ali-Akbar, Gorbet Rob, Kühnlenz Kolja, Hoey Jesse, and Kulić Dana. 2013. Body movements for affective expression: A survey of automatic recognition and generation. IEEE Trans. Affect. Comput. 4, 4 (2013), 341359.Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Keller Peter E., Novembre Giacomo, and Hove Michael J.. 2014. Rhythm in joint action: Psychological and neurophysiological mechanisms for real-time interpersonal coordination. Philos. Trans. Roy. Societ. B: Biol. Sci. 369, 1658 (2014), 20130394.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Khan Sohaib and Shah Mubarak. 2000. Tracking people in presence of occlusion. In Asian Conference on Computer Vision, Vol. 5. Citeseer.Google ScholarGoogle Scholar
  53. [53] Kim Kyungwan and Bock Otmar. 2019. Ecological validity of manual grasping movements in an everyday-like grocery shopping task. Experim. Brain Res. 237, 5 (2019), 11691177.Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Kitchin Rob. 2014. The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences. London. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Kleinsmith Andrea and Bianchi-Berthouze Nadia. 2013. Affective body expression perception and recognition: A survey. IEEE Trans. Affect. Comput. 4, 1 (2013), 1533.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] London NIHR Research Design Service. 2018. Patient and Public Involvement in Health and Social Care Research: A Handbook for Researchers. Technical Report. Retrieved from https://www.rds-london.nihr.ac.uk/wpcms/wp-content/uploads/2018/10/RDS_PPI-Handbook_2018_WEB_VERSION.pdf.Google ScholarGoogle Scholar
  57. [57] Luo Yu, Ye Jianbo, Adams Reginald B., Li Jia, Newman Michelle G., and Wang James Z.. 2020. ARBEE: Towards automated recognition of bodily expression of emotion in the wild. Int. J. Comput. Vis. 128, 1 (2020), 125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Lussu Vincenzo, Niewiadomski Radoslaw, Volpe Gualtiero, and Camurri Antonio. 2020. The role of respiration audio in multimodal analysis of movement qualities. J. Multim. User Interf. 14, 1 (2020), 115.Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Madan Christopher R.. 2021. Scan once, analyse many: Using large open-access neuroimaging datasets to understand the brain. Neuroinformatics (2021), 129.Google ScholarGoogle Scholar
  60. [60] Marek Scott, Tervo-Clemmens Brenden, Calabro Finnegan J., Montez David F., Kay Benjamin P., Hatoum Alexander S., Donohue Meghan Rose, Foran William, Miller Ryland L., Hendrickson Timothy J., et al. 2022. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 7902 (2022), 654660.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Meina Michał, Janusz Andrzej, Rykaczewski Krzysztof, Ślęzak Dominik, Celmer Bartosz, and Krasuski Adam. 2015. Tagging firefighter activities at the emergency scene: Summary of AAIA’15 data mining competition at knowledge Pit. In Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 367373.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Moelants Dirk, Demey Michiel, Grachten Maarten, Wu Chia-Fen, and Leman Marc. 2012. The influence of an audience on performers: A comparison between rehearsal and concert using audio, video and movement data. J. New Mus. Res. 41, 1 (2012), 6778.Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Munn Zachary, Peters Micah D. J., Stern Cindy, Tufanaru Catalin, McArthur Alexa, and Aromataris Edoardo. 2018. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 18, 1 (2018), 17. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Murray-Rust Peter. 2008. Open data in science. Serials Rev. 34, 1 (2008), 5264. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] Noroozi Fatemeh, Kaminska Dorota, Corneanu Ciprian, Sapinski Tomasz, Escalera Sergio, and Anbarjafari Gholamreza. 2018. Survey on emotional body gesture recognition. IEEE Trans. Affect. Comput. (2018).Google ScholarGoogle Scholar
  66. [66] Nunes João Ferreira, Moreira Pedro Miguel, and Tavares João Manuel R. S.. 2019. Benchmark RGB-D gait datasets: A systematic review. In ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing. Springer, 366372.Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Olugbade Temitayo A., Singh Aneesha, Bianchi-Berthouze Nadia, Marquardt Nicolai, Aung Min S. H., and Williams Amanda C. De C. 2019. How can affect be detected and represented in technological support for physical rehabilitation? ACM Trans. Comput.-Hum. Interact. 26, 1 (2019), 129.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [68] Polak Rainer, Tarsitani Simone, and Clayton Martin. 2018. IEMP Malian Jembe. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Ramamurthy Sreenivasan Ramasamy and Roy Nirmalya. 2018. Recent trends in machine learning for human activity recognition–A survey. Data Mining Knowl. Discov. 8, 4 (2018), e1254.Google ScholarGoogle Scholar
  70. [70] Ruffieux Simon, Lalanne Denis, Mugellini Elena, and Khaled Omar Abou. 2014. A survey of datasets for human gesture recognition. In International Conference on Human-computer Interaction. Springer, 337348.Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Sambasivan Nithya, Arnesen Erin, Hutchinson Ben, Doshi Tulsee, and Prabhakaran Vinodkumar. 2021. Re-imagining algorithmic fairness in India and beyond. In ACM Conference on Fairness, Accountability, and Transparency. 315328.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. [72] Sambasivan Nithya, Kapania Shivani, Highfill Hannah, Akrong Diana, Paritosh Praveen, and Aroyo Lora M.. 2021. “Everyone wants to do the model work, not the data work”: Data cascades in high-stakes AI. In CHI Conference on Human Factors in Computing Systems. 115.Google ScholarGoogle Scholar
  73. [73] Schilbach Leonhard, Timmermans Bert, Reddy Vasudevi, Costall Alan, Bente Gary, Schlicht Tobias, and Vogeley Kai. 2013. Toward a second-person neuroscience 1. Behav. Brain Sci. 36, 4 (2013), 393414.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Sheets-Johnstone Maxine. 2011. The Primacy of Movement. (Advances in Consciousness Research, Vol. 82.)John Benjamins Publishing Company, Amsterdam. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  75. [75] Singh Roshan, Sonawane Ankur, and Srivastava Rajeev. 2020. Recent evolution of modern datasets for human activity recognition: A deep survey. Multim. Syst. 26, 2 (2020), 83106.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Singh Tej and Vishwakarma Dinesh Kumar. 2019. Video benchmarks of human action datasets: A review. Artif. Intell. Rev. 52, 2 (2019), 11071154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. [77] Spiel Katta. 2021. The bodies of TEI—Investigating norms and assumptions in the design of embodied interaction. In International Conference on Tangible, Embedded, and Embodied Interaction. 119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. [78] Stephens-Fripp Benjamin, Naghdy Fazel, Stirling David, and Naghdy Golshah. 2017. Automatic affect perception based on body gait and posture: A survey. Int. J. Soc. Robot. 9, 5 (2017), 617641.Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Ting Lena H., Chiel Hillel J., Trumbower Randy D., Allen Jessica L., McKay J. Lucas, Hackney Madeleine E., and Kesar Trisha M.. 2015. Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86, 1 (2015), 3854.Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Tricco Andrea C., Lillie Erin, Zarin Wasifa, O’Brien Kelly K., Colquhoun Heather, Levac Danielle, Moher David, Peters Micah D. J., Horsley Tanya, Weeks Laura, Hempel Susanne, Akl Elie A., Chang Christine, McGowan Jessie, Stewart Lesley, Hartling Lisa, Aldcroft Adrian, Wilson Michael G., Garritty Chantelle, Lewin Simon, Godfrey Christina M., MacDonald Marilyn T., Langlois Etienne V., Soares-Weiser Karla, Moriarty Jo, Clifford Tammy, Tunçalp Özge, and Straus Sharon E.. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Internal Med. 169, 7 (2018), 467473. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Valerio Melissa A., Rodriguez Natalia, Winkler Paula, Lopez Jaime, Dennison Meagen, Liang Yuanyuan, and Turner Barbara J.. 2016. Comparing two sampling methods to engage hard-to-reach communities in research priority setting. BMC Med. Res. Methodol. 16, 1 (2016), 111.Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] Horn John D. Van and Gazzaniga Michael S.. 2002. Databasing fMRI studies—Towards a “discovery science” of brain function. Nat. Rev. Neurosci. 3, 4 (2002), 314318.Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Varga Somogy and Heck Detlef H.. 2017. Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Conscious. Cogn. 56 (2017), 7790.Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Vision Todd J.. 2010. Open data and the social contract of scientific publishing. BioScience 60, 5 (2010), 330331. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Voulodimos Athanasios, Kosmopoulos Dimitrios, Vasileiou Georgios, Sardis Emmanuel, Anagnostopoulos Vasileios, Lalos Constantinos, Doulamis Anastasios, and Varvarigou Theodora. 2012. A threefold dataset for activity and workflow recognition in complex industrial environments. IEEE MultiM. 19, 03 (2012), 4252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. [86] Wells J. C. K., Cole T. J., Bruner D., and Treleaven P.. 2008. Body shape in American and British adults: Between-country and inter-ethnic comparisons. Int. J. Obes. 32, 1 (2008), 152159.Google ScholarGoogle ScholarCross RefCross Ref
  87. [87] Whittaker Meredith, Alper Meryl, Bennett Cynthia L., Hendren Sara, Kaziunas Liz, Mills Mara, Morris Meredith Ringel, Rankin Joy, Rogers Emily, Salas Marcel, et al. 2019. Disability, Bias, and AI. Technical Report.Google ScholarGoogle Scholar
  88. [88] Williams Rua M. and Gilbert Juan E.. 2019. Cyborg perspectives on computing research reform. In CHI Conference on Human Factors in Computing Systems. 111.Google ScholarGoogle Scholar
  89. [89] Xu Shihao, Fang Jing, Hu Xiping, Ngai Edith, Guo Yi, Leung Victor, Cheng Jun, and Hu Bin. 2020. Emotion recognition from gait analyses: Current research and future directions. arXiv preprint arXiv:2003.11461 (2020).Google ScholarGoogle Scholar
  90. [90] Yan Jin H., Thomas Jerry R., Stelmach George E., and Thomas Katherine T.. 2000. Developmental features of rapid aiming arm movements across the lifespan. J. Motor Behav. 32, 2 (2000), 121140.Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Zacharatos Haris, Gatzoulis Christos, and Chrysanthou Yiorgos L.. 2014. Automatic emotion recognition based on body movement analysis: A survey. IEEE Comput. Graph. Applic. 34, 6 (2014), 3545.Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Zhang Jing, Li Wanqing, Ogunbona Philip O., Wang Pichao, and Tang Chang. 2016. RGB-D-based action recognition datasets: A survey. Patt. Recog. 60 (2016), 86105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Zhuang Fuzhen, Qi Zhiyuan, Duan Keyu, Xi Dongbo, Zhu Yongchun, Zhu Hengshu, Xiong Hui, and He Qing. 2020. A comprehensive survey on transfer learning. Proc. IEEE 109, 1 (2020), 4376.Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Zunino Andrea, Cavazza Jacopo, Volpi Riccardo, Morerio Pietro, Cavallo Andrea, Becchio Cristina, and Murino Vittorio. 2020. Predicting intentions from motion: The subject-adversarial adaptation approach. Int. J. Comput. Vis. 128, 1 (2020), 220239.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Human Movement Datasets: An Interdisciplinary Scoping Review

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 55, Issue 6
                June 2023
                781 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/3567471
                Issue’s Table of Contents

                ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 December 2022
                • Online AM: 13 May 2022
                • Accepted: 2 May 2022
                • Revised: 27 April 2022
                • Received: 4 January 2022
                Published in csur Volume 55, Issue 6

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • survey
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              Full Text

              View this article in Full Text.

              View Full Text

              HTML Format

              View this article in HTML Format .

              View HTML Format