skip to main content
10.1145/3531146.3533151acmotherconferencesArticle/Chapter ViewAbstractPublication PagesfacctConference Proceedingsconference-collections
research-article
Open Access

Promoting Ethical Awareness in Communication Analysis: Investigating Potentials and Limits of Visual Analytics for Intelligence Applications

Published:20 June 2022Publication History

ABSTRACT

Digital systems for analyzing human communication data have become prevalent in recent years. This may be related to the increasing abundance of data that can be harnessed but can hardly be managed manually. Intelligence analysis of communications data in investigative journalism, criminal intelligence, and law present particularly interesting cases, as they must take into account the often highly sensitive properties of the underlying operations and data. At the same time, these are areas where increasingly automated, sophisticated approaches and tailored systems can be particularly useful and relevant, especially in terms of Big Data manageability. However, by the shifting of responsibilities, this also poses dangers. In addition to privacy concerns, these dangers relate to uncertain or poor data quality, leading to discrimination and potentially misleading insights. Other problems relate to a lack of transparency and traceability, making it difficult to accurately identify problems and determine appropriate remedial strategies.

Visual analytics combines machine learning methods with interactive visual interfaces to enable human sense- and decision-making. This technique can be key for designing and operating meaningful interactive communication analysis systems that consider these ethical challenges. In this interdisciplinary work, a joint endeavor of computer scientists, ethicists, and scholars in Science & Technology Studies, we investigate and evaluate opportunities and risks involved in using Visual analytics approaches for communication analysis in intelligence applications in particular. We introduce, at first, the common technological systems used in communication analysis, with a special focus on intelligence analysis in criminal investigations, further discussing the domain-specific ethical implications, tensions, and risks involved. We then make the case of how tailored Visual Analytics approaches may reduce and mitigate the described problems, both theoretically and through practical examples. Offering interactive analysis capabilities and what-if explorations while facilitating guidance, provenance generation, and bias awareness (through nudges, for example) can improve analysts’ understanding of their data, increasing trustworthiness, accountability, and generating knowledge. We show that finding Visual Analytics design solutions for ethical issues is not a mere optimization task with an ideal final solution. Design solutions for specific ethical problems (e.g., privacy) often trigger new ethical issues (e.g., accountability) in other areas. Balancing out and negotiating these trade-offs has, as we argue, to be an integral aspect of the system design process from the outset. Finally, our work identifies existing gaps and highlights research opportunities, further describing how our results can be transferred to other domains. With this contribution, we aim at informing more ethically-aware approaches to communication analysis in intelligence operations.

References

  1. AI Ethics Impact Group. 2020. From Principles to Practice An Interdisciplinary Framework to Operationalise AI Ethics. https://www.bertelsmann-stiftung.de/fileadmin/files/BSt/Publikationen/GrauePublikationen/WKIO_2020_final.pdfGoogle ScholarGoogle Scholar
  2. Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel Preoţiuc-Pietro, and Vasileios Lampos. 2016. Predicting Judicial Decisions of the European Court of Human Rights: A Natural Language Processing Perspective. PeerJ Computer Science 2 (2016), e93. https://doi.org/10.7717/peerj-cs.93Google ScholarGoogle ScholarCross RefCross Ref
  3. American Civil Liberties Union. 2016. Statement of Concern About Predictive Policing by ACLU and 16 Civil Rights Privacy, Racial Justice, and Technology Organizations. https://www.aclu.org/other/statement-concern-about-predictive-policing-aclu-and-16-civil-rights-privacy-racial-justiceGoogle ScholarGoogle Scholar
  4. Morgan G. Ames. 2015. Charismatic Technology. Aarhus Series on Human Centered Computing 1, 1 (2015), 12. https://doi.org/10.7146/aahcc.v1i1.21199Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Morgan G. Ames. 2019. The Charisma Machine: The Life, Death, and Legacy of One Laptop per Child. MIT Press, Cambridge, MA, USA.Google ScholarGoogle Scholar
  6. Louise Amoore. 2014. Security and the Claim to Privacy. International political sociology 8, 1 (2014), 108–112. http://dro.dur.ac.uk/14920/Google ScholarGoogle ScholarCross RefCross Ref
  7. Louise Amoore. 2019. Doubt and the Algorithm: On the Partial Accounts of Machine Learning. Theory, Culture & Society 36, 6 (2019), 147–169. https://doi.org/10.1177/0263276419851846Google ScholarGoogle ScholarCross RefCross Ref
  8. Mike Ananny and Kate Crawford. 2018. Seeing Without Knowing: Limitations of the Transparency Ideal and its Application to Algorithmic Accountability. New Media & Society 20, 3 (2018), 973–989. https://doi.org/10.1177/1461444816676645Google ScholarGoogle ScholarCross RefCross Ref
  9. Florian M. Artinger, Sabrina Artinger, and Gerd Gigerenzer. 2019. C. Y. A.: Frequency and Causes of Defensive Decisions in Public Administration. Business Research 12, 1 (2019), 9–25. https://doi.org/10.1007/s40685-018-0074-2Google ScholarGoogle ScholarCross RefCross Ref
  10. Jef Ausloos. 2012. The ‘Right to be Forgotten’ – Worth remembering?Computer Law & Security Review 28, 2 (2012), 143–152. https://doi.org/10.1016/j.clsr.2012.01.006Google ScholarGoogle ScholarCross RefCross Ref
  11. Ciano Aydin, Margoth González Woge, and Peter-Paul Verbeek. 2019. Technological Environmentality: Conceptualizing Technology as a Mediating Milieu. Philosophy & Technology 32, 2 (2019), 321–338. https://doi.org/10.1007/s13347-018-0309-3Google ScholarGoogle ScholarCross RefCross Ref
  12. Karen Barad. 2014. Diffracting Diffraction: Cutting Together-Apart. Parallax 20, 3 (2014), 168–187. https://doi.org/10.1080/13534645.2014.927623Google ScholarGoogle ScholarCross RefCross Ref
  13. Jascha Bareis and Christian Katzenbach. 2021. Talking AI into Being: The Narratives and Imaginaries of National AI Strategies and Their Performative Politics. Science, Technology & Human Values(2021), 01622439211030007. https://doi.org/10.1177/01622439211030007Google ScholarGoogle ScholarCross RefCross Ref
  14. Solon Barocas, Moritz Hardt, and Arvind Narayanan. 2017. Fairness and Machine Learning. Nips Tutorial 1(2017).Google ScholarGoogle Scholar
  15. Eric P.S. Baumer. 2015. Reflective Informatics: Conceptual Dimensions for Designing Technologies of Reflection. In Proceedings of the 33rd CHI Conference on Human Factors in Computing Systems(CHI), Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM, New York, NY, USA, 585–594. https://doi.org/10.1145/2702123.2702234Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ruha Benjamin. 2019. Race After Technology: Abolitionist Tools for the New Jim Code. Polity, Medford MA.Google ScholarGoogle Scholar
  17. Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, San Francisco, CA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. John M. Carrol. 1999. Five Reasons for Scenario-Based Design. In Proceedings of the 32nd Annual Hawaii International Conference on System Sciences, Ralph H. Sprague (Ed.). IEEE Comput. Soc, 11. https://doi.org/10.1109/HICSS.1999.772890Google ScholarGoogle ScholarCross RefCross Ref
  19. Michael Correll. 2019. Ethical Dimensions of Visualization Research. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Stephen Brewster, Geraldine Fitzpatrick, Anna Cox, and Vassilis Kostakos (Eds.). ACM, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300418Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Sasha Costanza-Chock. 2020. Design Justice: Community-Led Practices to Build the Worlds We Need. MIT Press, New York. https://library.oapen.org/handle/20.500.12657/43542Google ScholarGoogle ScholarCross RefCross Ref
  21. DataWalk Inc.2020. DataWalk. https://datawalk.com/Google ScholarGoogle Scholar
  22. Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen, and Vincent D. Blondel. 2013. Unique in the Crowd: The Privacy Bounds of Human Mobility. Scientific Reports 3(2013), 1376.Google ScholarGoogle ScholarCross RefCross Ref
  23. Erinç Dikici, Maël Fabien, Jan Horınek, Joshua Hughes, Miroslav Janošik, Marek Kovac, Petr Motlicek, Hoang H. Nguyen, Shantipriya Parida, Johan Rohdin, 2021. ROXSD: A Simulated Dataset of Communication in Organized Crime. ISCA Symposium on Security and Privacy in Speech Communication (2021), 32–36.Google ScholarGoogle Scholar
  24. Mennatallah El-Assady, Valentin Gold, Markus John, Thomas Ertl, and Daniel A. Keim. 2016. Visual Text Analytics in Context of Digital Humanities. In 1st IEEE VIS Workshop on Visualization for the Digital Humanities (Vis4DH) as part of the IEEE VIS 2016. https://scibib.dbvis.de/publications/view/686Google ScholarGoogle Scholar
  25. Geoffrey Ellis (Ed.). 2018. Cognitive Biases in Visualizations(1st ed. 2018 ed.). Springer International Publishing and Imprint: Springer, Cham.Google ScholarGoogle Scholar
  26. Virginia Eubanks. 2018. Automating Inequality: How High-tech Tools Profile, Police, and Punish the Poor (illustrated edition ed.). St Martin’s Press.Google ScholarGoogle Scholar
  27. European Commission. 2021. White Paper on Artificial Intelligence - A European Approach to Excellence and Trust. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0065&from=ENGoogle ScholarGoogle Scholar
  28. European Commission. 2021-04-21. Proposal for a Regulation of the European Parliament and of the Council Laying down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts (COM/2021/206 final): Artifical Intelligence Act. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206Google ScholarGoogle Scholar
  29. European Commission. 2021-12-09. Proposal for a Directive of the European Parliament and of the Council on Improving Working Conditions in Platform Work (COM(2021) 762). https://ec.europa.eu/social/BlobServlet?docId=24992&langId=enGoogle ScholarGoogle Scholar
  30. European Parliament and the European Council. 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation): GDPR.Google ScholarGoogle Scholar
  31. Europol. 2021. European Union Serious and Organised Crime Threat Assessment (SOCTA): A Corrupting Influence: The Infiltration and Undermining of Europe’s Economy and Society by Organised Crime. https://www.europol.europa.eu/cms/sites/default/files/documents/socta2021_1.pdfGoogle ScholarGoogle Scholar
  32. Jeffrey Fagan, Anthony A. Braga, Rod K. Brunson, and April Pattavina. 2016. Stops and Stares: Street Stops, Surveillance, and Race in the New Policing. Fordham Urban Law Journal 43, 3 (2016), 77.Google ScholarGoogle Scholar
  33. Maximilian T. Fischer, Devanshu Arya, Dirk Streeb, Daniel Seebacher, Daniel A. Keim, and Marcel Worring. 2020. Visual Analytics for Temporal Hypergraph Model Exploration. IEEE Transactions on Visualization and Computer Graphics 27, 2(2020), 550–560. https://doi.org/10.1109/TVCG.2020.3030408Google ScholarGoogle ScholarCross RefCross Ref
  34. Maximilian T. Fischer, Frederik Dennig, Daniel Seebacher, Daniel A. Keim, and Mennatallah El-Assady. 2021. Communication Analysis through Visual Analytics: Current Practices, Challenges, and New Frontiers. arxiv:2106.14802Google ScholarGoogle Scholar
  35. Maximilian T. Fischer, Daniel Seebacher, Rita Sevastjanova, Daniel A. Keim, and Mennatallah El-Assady. 2021. CommAID: Visual Analytics for Communication Analysis through Interactive Dynamics Modeling. Computer Graphics Forum 40, 3 (2021), 25–36. https://doi.org/10.1111/cgf.14286Google ScholarGoogle ScholarCross RefCross Ref
  36. Sofie Flensburg and Signe Sophus Lai. 2020. Mapping Digital Communication Systems: Infrastructures, Markets, and Policies as Regulatory Forces. Media, Culture & Society 42, 5 (2020), 692–710. https://doi.org/10.1177/0163443719876533Google ScholarGoogle ScholarCross RefCross Ref
  37. Cortney A. Franklin. 2005. Male Peer Support and the Police Culture. Women & Criminal Justice 16, 3 (2005), 1–25. https://doi.org/10.1300/J012v16n03_01Google ScholarGoogle ScholarCross RefCross Ref
  38. William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. 1992. Knowledge Discovery in Databases: An Overview. AI Magazine 13, 3 (1992), 57. https://doi.org/10.1609/aimag.v13i3.1011Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Johannes Fuchs, Petra Isenberg, Anastasia Bezerianos, and Daniel A. Keim. 2017. A Systematic Review of Experimental Studies on Data Glyphs. IEEE Transactions on Visualization and Computer Graphics 23, 7(2017), 1863–1879. https://doi.org/10.1109/TVCG.2016.2549018Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Alexander R. Galloway. 2012. The Interface Effect. Wiley.Google ScholarGoogle Scholar
  41. Clare Garvie and Jonathan Frankle. 2016. Facial-Recognition Software Might Have a Racial Bias Problem. The Atlantic (2016). https://www.theatlantic.com/technology/archive/2016/04/the-underlying-bias-of-facial-recognition-systems/476991/Google ScholarGoogle Scholar
  42. Lisa Gitelman. 2013. Raw Data is an Oxymoron. The MIT Press, Cambridge, Massachusetts.Google ScholarGoogle Scholar
  43. Ben Green. 2018. Putting the J(ustice) in FAT. https://medium.com/berkman-klein-center/putting-the-j-ustice-in-fat-28da2b8eae6dGoogle ScholarGoogle Scholar
  44. Rachid Hadjidj, Mourad Debbabi, Hakim Lounis, Farkhund Iqbal, Adam Szporer, and Djamel Benredjem. 2009. Towards an Integrated E-mail Forensic Analysis Framework. Digital Investigation 5, 3-4 (2009), 124–137. https://doi.org/10.1016/j.diin.2009.01.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Donna J. Haraway. 2017. Staying with the Trouble: Making Kin in the Chthulucene. Experimental Futures (illustrated edition ed.). Academic Press.Google ScholarGoogle Scholar
  46. Paula Helm and Thilo Hagendorff. 2021. Beyond the Prediction Paradigm: Challenges for AI in the Struggle Against Organized Crime. Law and Contemporary Problems 84, 3 (2021), 1–17.Google ScholarGoogle Scholar
  47. Kathryn Henderson. 1991. Flexible Sketches and Inflexible Data Bases: Visual Communication, Conscription Devices, and Boundary Objects in Design Engineering. Science, Technology & Human Values 16, 4 (1991), 448–473. http://sth.sagepub.com/content/16/4/448.shortGoogle ScholarGoogle ScholarCross RefCross Ref
  48. Matthew Honnibal. 2019. SpaCy: An NLP library. https://www.spacy.ioGoogle ScholarGoogle Scholar
  49. Chris Jay Hoofnagle, Bart van der Sloot, and Frederik Zuiderveen Borgesius. 2018. The European Union General Data Protection Regulation: What it is and What it Means. Information & Communications Technology Law 28, 1 (2018). https://doi.org/10.1080/13600834.2019.1573501Google ScholarGoogle ScholarCross RefCross Ref
  50. Branden Hookway. 2014. Interface. MIT Press.Google ScholarGoogle Scholar
  51. IBM. 2020. i2 Analyst’s Notebook. https://www.ibm.com/us-en/marketplace/analysts-notebookGoogle ScholarGoogle Scholar
  52. Sheila Jasanoff. 2015. Future Imperfect: Science, Technology, and the Imaginations of Modernity. In Dreamscapes of Modernity. University of Chicago Press, 1–33. https://doi.org/10.7208/9780226276663-001Google ScholarGoogle ScholarCross RefCross Ref
  53. Wolfgang Jentner, Rita Sevastjanova, Florian Stoffel, Daniel A. Keim, Jürgen Bernard, and Mennatallah El-Assady. 2018. Minions, Sheep, and Fruits : Metaphorical Narratives to Explain Artificial Intelligence and Build Trust. In Workshop on Visualization for AI Explainability at IEEE. https://bib.dbvis.de/uploadedFiles/minionssheepfruits.pdfGoogle ScholarGoogle Scholar
  54. Elizabeth E. Joh. 2017. Feeding the Machine: Policing Crime Data & Algorithms. William & Mary Bill of Rights Journal 26 (2017), 287.Google ScholarGoogle Scholar
  55. Samuel Kaski and Jaakko Peltonen. 2011. Dimensionality Reduction for Data Visualization. IEEE Signal Processing Magazine 28, 2 (2011), 100–104. https://doi.org/10.1109/MSP.2010.940003Google ScholarGoogle ScholarCross RefCross Ref
  56. Mareile Kaufmann, Simon Egbert, and Matthias Leese. 2018. Predictive Policing and the Politics of Patterns. The British Journal of Criminology 59, 3 (2018), 674–692. https://doi.org/10.1093/bjc/azy060Google ScholarGoogle ScholarCross RefCross Ref
  57. Daniel A. Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlhammer, and Guy Melançon. 2008. Visual Analytics: Definition, Process, and Challenges. In Information Visualization, Andreas Kerren (Ed.). Lecture Notes in Computer Science, Vol. 4950. Springer, 154–175. https://doi.org/10.1007/978-3-540-70956-5-7Google ScholarGoogle ScholarCross RefCross Ref
  58. Daniel A. Keim, Jörn Kohlhammer, Geoffrey P. Ellis, and Florian Mansmann. 2010. Mastering the Information Age Solving Problems with Visual Analytics. Eurographics Association.Google ScholarGoogle Scholar
  59. Stefanie Kemme, Iniobong Essien, and Marleen Stelter. 2020. Antimuslimische Einstellungen in der Polizei?: Der Zusammenhang von Kontakthäufigkeit und -qualität mit Vorurteilen und Stereotypen gegenüber Muslimen. Monatsschrift für Kriminologie und Strafrechtsreform 103, 2(2020), 129–149. https://doi.org/10.1515/mks-2020-2048Google ScholarGoogle ScholarCross RefCross Ref
  60. Robert O. Keohane and Joseph S. Nye Jr. 1998. Power and Interdependence in the Information Age. Foreign Affairs 77(1998), 81.Google ScholarGoogle ScholarCross RefCross Ref
  61. Rob Kitchin. 2017. Thinking Critically About and Researching Algorithms. Information, Communication & Society 20, 1 (2017). https://doi.org/10.1080/1369118X.2016.1154087Google ScholarGoogle ScholarCross RefCross Ref
  62. Robert Kosara and Jock Mackinlay. 2013. Storytelling: The Next Step for Visualization. Computer 46, 5 (2013), 44–50. https://doi.org/10.1109/MC.2013.36Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks on Pretrained Models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Computational Linguistics, Stroudsburg, PA, USA, 2793–2806. https://doi.org/10.18653/v1/2020.acl-main.249Google ScholarGoogle ScholarCross RefCross Ref
  64. Jeff Larson and Julia Angwin. 2016. Technical Response to Northpointe. ProPublica (2016). https://www.propublica.org/article/technical-response-to-northpointeGoogle ScholarGoogle Scholar
  65. Bruno Lepri, Nuria Oliver, Emmanuel Letouzé, Alex Pentland, and Patrick Vinck. 2018. Fair, Transparent, and Accountable Algorithmic Decision-making Processes: The Premise, the Proposed Solutions, and the Open Challenges. Philosophy & Technology 31, 4 (2018), 611–627. https://doi.org/10.1007/s13347-017-0279-xGoogle ScholarGoogle ScholarCross RefCross Ref
  66. Benjamin Lipp. 2017. Analytik des Interfacing. Zur Materialität technologischer Verschaltung in prototypischen Milieus robotisierter Pflege. 1866-2447 10(2017), 107–129. https://doi.org/10.6094/behemoth.2017.10.1.948Google ScholarGoogle ScholarCross RefCross Ref
  67. Benjamin Lipp, Paula Helm, Athanasios Karafillidis, and Roser Pujadas. 2022. Theorising Interfaces / Interface Theories. In EASST 2022.Google ScholarGoogle Scholar
  68. Yang Liu, Tim Althoff, and Jeffrey Heer. 2020. Paths Explored, Paths Omitted, Paths Obscured: Decision Points & Selective Reporting in End-to-End Data Analysis. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjørn, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376533Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Kristian Lum and William Isaac. 2016. To Predict and Serve?Significance 13, 5 (2016), 14–19. https://doi.org/10.1111/j.1740-9713.2016.00960.xGoogle ScholarGoogle ScholarCross RefCross Ref
  70. Adrian Mackenzie. 2015. The Production of Prediction: What Does Machine Learning Want?European Journal of Cultural Studies 18, 4/5 (2015), 429–445.Google ScholarGoogle Scholar
  71. Kevin Macnish. 2018. The Ethics of Surveillance: An Introduction. Routledge Taylor & Francis Group, London and New York.Google ScholarGoogle Scholar
  72. Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, Mass. and London.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Viktor Mayer-Schönberger and Kenneth Cukier. 2013. Big Data: Die Revolution, die unser Leben verändern wird (1. ed ed.). Redline-Verlag, München.Google ScholarGoogle Scholar
  74. Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A Survey on Bias and Fairness in Machine Learning. ACM Computing Surveys 54, 6 (2021), 1–35. https://doi.org/10.1145/3457607Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jacob Metcalf and Kate Crawford. 2016. Where are Human Subjects in Big Data Research? The Emerging Ethics Divide. Big Data & Society 3, 1 (2016), 2053951716650211. https://doi.org/10.1177/2053951716650211Google ScholarGoogle ScholarCross RefCross Ref
  76. Christoph Molnar. 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Interpretable. Lulu, Morisville, North Carolina.Google ScholarGoogle Scholar
  77. Anouk Mols and Susanne Janssen. 2017. Not Interesting Enough to be Followed by the NSA. Digital Journalism 5, 3 (2017), 277–298. https://doi.org/10.1080/21670811.2016.1234938Google ScholarGoogle ScholarCross RefCross Ref
  78. Helen Nissenbaum. 1994. Computing and accountability. Communications of the ACM 37, 1 (1994), 72–80. https://doi.org/10.1145/175222.175228Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Safiya Umoja Noble. 2018. Algorithms of Oppression: How Search Engines Reinforce Racism. New York University Press, New York.Google ScholarGoogle Scholar
  80. Nuix Pty Ltd. 2020. Nuix Discover and Nuix Investigate. https://www.nuix.com/productsGoogle ScholarGoogle Scholar
  81. Cathy O’Neil. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (1st edition ed.). Penguin Books UK.Google ScholarGoogle Scholar
  82. Palantir Technologies, Inc.2020. Gotham. https://www.palantir.com/palantir-gotham/Google ScholarGoogle Scholar
  83. Letizia Paoli. 2002. The Paradoxes of Organized Crime. Crime, Law and Social Change 37, 1 (2002), 51–97. https://doi.org/10.1023/A:1013355122531Google ScholarGoogle ScholarCross RefCross Ref
  84. Frank Pasquale. 2015. The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press.Google ScholarGoogle Scholar
  85. Judy C. Pearson. 2011. Human Communication(4th ed.). McGraw-Hill, New York.Google ScholarGoogle Scholar
  86. E. Ashby Plant and B. Michelle Peruche. 2005. The Consequences of Race for Police Officers’ Responses to Criminal Suspects. Psychological Science 16, 3 (2005), 180–183. https://doi.org/10.1111/j.0956-7976.2005.00800.xGoogle ScholarGoogle ScholarCross RefCross Ref
  87. Roser Pujadas, Erika Valderrama, and Will Venters. 2020. Interfaces and the Dynamics of Digital Ecosystems: A Study of the Online Travel Ecosystem. International Conference on Information Systems (ICIS) (2020).Google ScholarGoogle Scholar
  88. Cynthia Rudin. 2019. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nature Machine Intelligence 1, 5 (2019), 206–215. https://doi.org/10.1038/s42256-019-0048-xGoogle ScholarGoogle ScholarCross RefCross Ref
  89. Dominik Sacha, Andreas Stoffel, Florian Stoffel, Bum Chul Kwon, Geoffrey P. Ellis, and Daniel A. Keim. 2014. Knowledge Generation Model for Visual Analytics. IEEE Transactions on Visualization and Computer Graphics 20, 12(2014), 1604–1613. https://doi.org/10.1109/TVCG.2014.2346481Google ScholarGoogle ScholarCross RefCross Ref
  90. Michael Sailer, Jan Hense, J Mandl, and Markus Klevers. 2014. Psychological perspectives on motivation through gamification. Interaction Design and Architecture Journal19 (2014), 28–37.Google ScholarGoogle Scholar
  91. Carlos Alberto Scolari. 2009. Mapping Conversations About New Media: The Theoretical Field of Digital Communication. New Media & Society 11, 6 (2009), 943–964. https://doi.org/10.1177/1461444809336513Google ScholarGoogle ScholarCross RefCross Ref
  92. John Scott. 2017. Social Network Analysis(4th ed.). SAGE, Los Angeles.Google ScholarGoogle Scholar
  93. Daniel Seebacher, Maximilian T. Fischer, Rita Sevastjanova, Daniel A. Keim, and Mennatallah El-Assady. 2019. Visual Analytics of Conversational Dynamics. In EuroVis Workshop on Visual Analytics (EuroVA)(EuroVA), Tatiana von Landesberger and Cagatay Turkay (Eds.). The Eurographics Association, Porto, Portugal. https://doi.org/10.2312/eurova.20191130Google ScholarGoogle ScholarCross RefCross Ref
  94. Andrew D. Selbst. 2018. Disparate Impact in Big Data Policing. Georgia Law Review 52, 1 (2018), 3373.Google ScholarGoogle Scholar
  95. Phoebe Sengers, Kirsten Boehner, Shay David, and Joseph ’Jofish’ Kaye. 2005. Reflective Design. In Proceedings of the 4th Decennial Conference on Critical Computing Between Sense and Sensibility - CC ’05. ACM Press, Aarhus, Denmark, 49. https://doi.org/10.1145/1094562.1094569Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Fabian Sperrle, Astrik Jeitler, Jürgen Bernard, Daniel Keim, and Mennatallah El-Assady. 2021. Co-Adaptive Visual Data Analysis and Guidance Processes. Computers & Graphics 100 (2021), 93–105. https://doi.org/10.1016/j.cag.2021.06.016Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Fabian Sperrle, Astrik Jeitler, Jürgen Bernard, Daniel A. Keim, and Mennatallah El-Assady. 2020. Learning and Teaching in Co-Adaptive Guidance for Mixed-Initiative Visual Analytics. In EuroVis Workshop on Visual Analytics (EuroVA), Cagatay Turkay and Katerina Vrotsou (Eds.). https://doi.org/10.2312/eurova.20201088Google ScholarGoogle ScholarCross RefCross Ref
  98. Matthias Spielkamp. 2017. Inspecting Algorithms for Bias. MIT Technology Review(2017). https://www.technologyreview.com/2017/06/12/105804/inspecting-algorithms-for-bias/Google ScholarGoogle Scholar
  99. Florian Stoffel, Wolfgang Jentner, Michael Behrisch, Johannes Fuch, and Daniel A. Keim. 2017. Interactive Ambiguity Resolution of Named Entities in Fictional Literature. Computer Graphics Forum 36, 3 (2017), 189–200.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Lucille Alice Suchman. 2007. Human-Machine Reconfigurations: Plans and Situated Actions (2nd ed.). Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  101. Wouter van Atteveldt and Tai-Quan Peng. 2018. When Communication Meets Computation: Opportunities, Challenges, and Pitfalls in Computational Communication Science. Communication Methods and Measures 12, 2-3 (2018), 81–92. https://doi.org/10.1080/19312458.2018.1458084Google ScholarGoogle ScholarCross RefCross Ref
  102. Emily Wall, John Stasko, and Alex Endert. 2019. Toward a Design Space for Mitigating Cognitive Bias in Vis. In 2019 IEEE Visualization Conference (VIS). IEEE, 111–115. https://doi.org/10.1109/VISUAL.2019.8933611Google ScholarGoogle ScholarCross RefCross Ref
  103. Gregor Wiedemann, Seid Muhie Yimam, and Chris Biemann. 2018. New/s/leak 2.0 – Multilingual Information Extraction and Visualization for Investigative Journalism. In Social Informatics, Steffen Staab, Olessia Koltsova, and Dmitry I. Ignatov (Eds.). Lecture Notes in Computer Science, Vol. 11186. Springer International Publishing, Cham, 313–322. https://doi.org/10.1007/978-3-030-01159-8_30Google ScholarGoogle ScholarCross RefCross Ref
  104. Tal Zarsky. 2016. The Trouble with Algorithmic Decisions: An Analytic Road Map to Examine Efficiency and Fairness in Automated and Opaque Decision Making. Science, Technology & Human Values 41, 1 (2016), 118–132. https://doi.org/10.1177/0162243915605575Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Promoting Ethical Awareness in Communication Analysis: Investigating Potentials and Limits of Visual Analytics for Intelligence Applications
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format