skip to main content
research-article
Open Access

Neural dual contouring

Published:22 July 2022Publication History
Skip Abstract Section

Abstract

We introduce neural dual contouring (NDC), a new data-driven approach to mesh reconstruction based on dual contouring (DC). Like traditional DC, it produces exactly one vertex per grid cell and one quad for each grid edge intersection, a natural and efficient structure for reproducing sharp features. However, rather than computing vertex locations and edge crossings with hand-crafted functions that depend directly on difficult-to-obtain surface gradients, NDC uses a neural network to predict them. As a result, NDC can be trained to produce meshes from signed or unsigned distance fields, binary voxel grids, or point clouds (with or without normals); and it can produce open surfaces in cases where the input represents a sheet or partial surface. During experiments with five prominent datasets, we find that NDC, when trained on one of the datasets, generalizes well to the others. Furthermore, NDC provides better surface reconstruction accuracy, feature preservation, output complexity, triangle quality, and inference time in comparison to previous learned (e.g., neural marching cubes, convolutional occupancy networks) and traditional (e.g., Poisson) methods. Code and data are available at https://github.com/czq142857/NDC.

Skip Supplemental Material Section

Supplemental Material

3528223.3530108.mp4

mp4

469.8 MB

References

  1. Nina Amenta, Marshall Bern, and Manolis Kamvysselis. 1998. A New Voronoi-Based Surface Reconstruction Algorithm. In SIGGRAPH. 415--421.Google ScholarGoogle Scholar
  2. Matan Atzmon and Yaron Lipman. 2020. SAL: Sign Agnostic Learning of Shapes From Raw Data. In CVPR. 2562--2571.Google ScholarGoogle Scholar
  3. Abhishek Badki, Orazio Gallo, Jan Kautz, and Pradeep Sen. 2020. Meshlet priors for 3D mesh reconstruction. In CVPR. 2849--2858.Google ScholarGoogle Scholar
  4. Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël Guennebaud, Joshua A. Levine, Andrei Sharf, and Claudio T Silva. 2017. A Survey of Surface Reconstruction from Point Clouds. In Computer Graphics Forum, Vol. 36. 301--329.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE TVCG 5, 4 (1999), 349--359.Google ScholarGoogle Scholar
  6. Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. 2019. Multi-Garment Net: Learning to Dress 3D People from Images. In ICCV. 5420--5430.Google ScholarGoogle Scholar
  7. Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. 2014. FAUST: Dataset and evaluation for 3D mesh registration. In CVPR. 3794--3801.Google ScholarGoogle Scholar
  8. Alexandre Boulch and Renaud Marlet. 2012. Fast and Robust Normal Estimation for Point Clouds with Sharp Features. Computer Graphics Forum 31, 5 (2012), 1765--1774.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niebner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D: Learning from RGB-D Data in Indoor Environments. In 3DV. 667--676.Google ScholarGoogle Scholar
  10. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. arXiv preprint arXiv:1512.03012 (2015).Google ScholarGoogle Scholar
  11. Zhiqin Chen and Hao Zhang. 2019. Learning Implicit Fields for Generative Shape Modeling. In CVPR. 5932--5941.Google ScholarGoogle Scholar
  12. Zhiqin Chen and Hao Zhang. 2021. Neural Marching Cubes. ACM Transactions on Graphics 40, 6 (2021), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Evgeni Chernyaev. 1995. Marching Cubes 33: construction of topologically correct isosurfaces. Technical Report CN/95-17. CERN.Google ScholarGoogle Scholar
  14. David Cohen-Steiner and Tran Kai Frank Da. 2004. A greedy Delaunay-based surface reconstruction algorithm. The Visual Computer 20, 1 (2004), 4--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Brian Curless and Marc Levoy. 1996. A volumetric method for building complex models from range images. In SIGGRAPH. 303--312.Google ScholarGoogle Scholar
  16. Bruno Rodrigues De Araújo, Daniel S. Lopes, Pauline Jepp, Joaquim A. Jorge, and Brian Wyvill. 2015. A Survey on Implicit Surface Polygonization. ACM Computing Surveys (CSUR) 47, 4 (2015), 1--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by example. ACM Transactions on Graphics 23, 3 (2004), 652--663.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2020. Learning deformable tetrahedral meshes for 3d reconstruction. In NeurIPS, Vol. 33. 9936--9947.Google ScholarGoogle Scholar
  19. Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error metrics. In SIGGRAPH. 209--216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan C. Russell, and Mathieu Aubry. 2018. A papier-mâché approach to learning 3D surface generation. In CVPR. 216--224.Google ScholarGoogle Scholar
  21. Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. 2020. Point2Mesh: A Self-Prior for Deformable Meshes. ACM Transactions on Graphics 39, 4 (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In CVPR. 770--778.Google ScholarGoogle Scholar
  23. Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020. Local implicit grid representations for 3d scenes. In CVPR. 6001--6010.Google ScholarGoogle Scholar
  24. Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual Contouring of Hermite Data. ACM Transactions on graphics 21, 3 (2002), 339--346.Google ScholarGoogle Scholar
  25. Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson surface reconstruction. ACM Transactions on Graphics 32, 3 (2013), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: a big CAD model dataset for geometric deep learning. In CVPR. 9601--9611.Google ScholarGoogle Scholar
  27. Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without Clean Data. In ICML. 2965--2974.Google ScholarGoogle Scholar
  28. Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira, and Geovan Tavares. 2003. Efficient implementation of marching cubes' cases with topological guarantees. Journal of Graphics Tools 8, 2 (2003), 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, and Tao Ju. 2010. Polygonizing extremal surfaces with manifold guarantees. In Proceedings of ACM Symposium on Solid and Physical Modeling. 189--194.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Yiyi Liao, Simon Donne, and Andreas Geiger. 2018. Deep marching cubes: Learning explicit surface representations. In CVPR. 2916--2925.Google ScholarGoogle Scholar
  31. Minghua Liu, Xiaoshuai Zhang, and Hao Su. 2020. Meshing point clouds with predicted intrinsic-extrinsic ratio guidance. In ECCV. 68--84.Google ScholarGoogle Scholar
  32. William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In SIGGRAPH. 163--169.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. In CVPR. 4455--4465.Google ScholarGoogle Scholar
  34. Zhenxing Mi, Yiming Luo, and Wenbing Tao. 2020. SSRNet: Scalable 3D Surface Reconstruction Network. In CVPR. 970--979.Google ScholarGoogle Scholar
  35. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV. 405--421.Google ScholarGoogle Scholar
  36. Gregory M. Nielson. 2004. Dual Marching Cubes. In IEEE Visualization. 489--496.Google ScholarGoogle Scholar
  37. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In CVPR. 165--174.Google ScholarGoogle Scholar
  38. Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus H. Gross, and Leonidas J. Guibas. 2005. Example-based 3D scan completion. In Symp. on Geometry Processing. 23--32.Google ScholarGoogle Scholar
  39. Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger. 2021. Shape as points: A differentiable Poisson solver. In NeurIPS, Vol. 34.Google ScholarGoogle Scholar
  40. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks. In ECCV. 523--540.Google ScholarGoogle Scholar
  41. Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In NeurIPS, Vol. 30. 5105--5114.Google ScholarGoogle Scholar
  42. Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman, Niloy Mitra, and Maks Ovsjanikov. 2021. Learning Delaunay Surface Elements for Mesh Reconstruction. In CVPR. 22--31.Google ScholarGoogle Scholar
  43. Edoardo Remelli, Artem Lukoianov, Stephan R. Richter, Benoît Guillard, Timur Bagautdinov, Pierre Baque, and Pascal Fua. 2020. MeshSDF: differentiable iso-surface extraction. In NeurIPS, Vol. 33. 22468--22478.Google ScholarGoogle Scholar
  44. Scott Schaefer, Tao Ju, and Joe Warren. 2007. Manifold dual contouring. IEEE TVCG 13, 3 (2007), 610--619.Google ScholarGoogle Scholar
  45. Ruwen Schnabel, Patrick Degener, and Reinhard Klein. 2009. Completion and Reconstruction with Primitive Shapes. Computer Graphics Forum 28 (2009), 503--512.Google ScholarGoogle ScholarCross RefCross Ref
  46. Nicholas Sharp and Maks Ovsjanikov. 2020. PointTriNet: Learned Triangulation of 3D Point Sets. In ECCV. 762--778.Google ScholarGoogle Scholar
  47. Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. 2012. Structure recovery by part assembly. ACM Transactions on Graphics 31, 6 (2012), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Vincent Sitzmann, Julien NP Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020. Implicit neural representations with periodic activation functions. In NeurIPS, Vol. 33. 7462--7473.Google ScholarGoogle Scholar
  49. Jiapeng Tang, Jiabao Lei, Dan Xu, Feiying Ma, Kui Jia, and Lei Zhang. 2021. SAConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks. In ICCV. 6484--6493.Google ScholarGoogle Scholar
  50. Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and Daniele Panozzo. 2019. Deep geometric prior for surface reconstruction. In CVPR. 10130--10139.Google ScholarGoogle Scholar
  51. Geoff Wyvill, Craig McPheeters, and Brian Wyvill. 1986. Data Structure for Soft Objects. The Visual Computer 2 (1986), 227--234.Google ScholarGoogle ScholarCross RefCross Ref
  52. Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: a dataset of 10,000 3D-printing models. arXiv preprint arXiv:1605.04797 (2016).Google ScholarGoogle Scholar

Index Terms

  1. Neural dual contouring

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 41, Issue 4
      July 2022
      1978 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3528223
      Issue’s Table of Contents

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 July 2022
      Published in tog Volume 41, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader