skip to main content
10.1145/3512290.3528825acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Automated algorithm selection for radar network configuration

Published:08 July 2022Publication History

ABSTRACT

The configuration of radar networks is a complex problem that is often performed manually by experts with the help of a simulator. Different numbers and types of radars as well as different locations that the radars shall cover give rise to different instances of the radar configuration problem. The exact modeling of these instances is complex, as the quality of the configurations depends on a large number of parameters, on internal radar processing, and on the terrains on which the radars need to be placed. Classic optimization algorithms can therefore not be applied to this problem, and we rely on "trial-and-error" black-box approaches.

In this paper, we study the performances of 13 black-box optimization algorithms on 153 radar network configuration problem instances. The algorithms perform considerably better than human experts. Their ranking, however, depends on the budget of configurations that can be evaluated and on the elevation profile of the location. We therefore also investigate automated algorithm selection approaches. Our results demonstrate that a pipeline that extracts instance features from the elevation of the terrain performs on par with the classical, far more expensive approach that extracts features from the objective function.

Skip Supplemental Material Section

Supplemental Material

References

  1. A. Auger, D. Brockhoff, and N. Hansen. 2011. Mirrored sampling in evolution strategies with weighted recombination. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '11. ACM, 861--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. N. Belkhir. 2017. Per Instance Algorithm Configuration for Continuous Black-Box Optimization. Ph.D. thesis. Université Paris-Saclay. https://hal.inria.fr/tel-01669527/documentGoogle ScholarGoogle Scholar
  3. M. Böther, L. Schiller, P. Fischbeck, L. Molitor, M.S. Krejca, and T. Friedrich. 2021. Evolutionary minimization of traffic congestion. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '21. ACM, 937--945. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold, and T. Hohm. 2010. Mirrored Sampling and Sequential Selection for Evolution Strategies. In Parallel Problem Solving from Nature - PPSN XI, 11th International Conference, September 11--15, 2010, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 6238). Springer, 11--21. Google ScholarGoogle ScholarCross RefCross Ref
  5. Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR abs/1810.05281 (2018). http://arxiv.org/abs/1810.05281 Available at http://arxiv.org/abs/1810.05281. A more up-to-date documentation of IOHprofiler is available at https://iohprofiler.github.io/.Google ScholarGoogle Scholar
  6. R. Fletcher. 1987. Practical Methods of Optimization; (2nd Ed.). Wiley-Interscience, USA.Google ScholarGoogle ScholarCross RefCross Ref
  7. N. Hansen. 2009. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '09 (Companion). ACM, 2389--2396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Hansen and A. Ostermeier. 2001. Completely Derandomized Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (2001), 159--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Hennig, J. Kretsch, C. Pessagno, P. Salamonowicz, and W. Stein. 2001. The Shuttle Radar Topography Mission. In Proceedings of the First International Symposium on Digital Earth Moving (DEM '01). Springer, 65--77.Google ScholarGoogle Scholar
  10. A. Jankovic and C. Doerr. 2020. Landscape-Aware Fixed-Budget Performance Regression for Modular CMA-ES Variants. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '20. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. A. Jankovic, G. Popovski, T. Eftimov, and C. Doerr. 2021. The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '21. ACM, 687--696. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Jarvis, H.I. Reuter, A. Nelson, and E. Guevara. 2008. Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT) (2008). https://srtm.csi.cgiar.orgGoogle ScholarGoogle Scholar
  13. G.A. Jastrebski and D.V. Arnold. 2006. Improving Evolution Strategies through Active Covariance Matrix Adaptation. In IEEE International Conference on Evolutionary Computation, CEC 2006, part of WCCI 2006. IEEE, 2814--2821. Google ScholarGoogle ScholarCross RefCross Ref
  14. J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4. 1942--1948 vol.4. Google ScholarGoogle ScholarCross RefCross Ref
  15. P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. 2015. Detecting Funnel Structures by Means of Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '15. ACM, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. P. Kerschke, M. Preuss, S. Wessing, and H. Trautmann. 2016. Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '16. ACM, 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Kerschke and H. Trautmann. 2019. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco. In Applications in Statistical Computing: From Music Data Analysis to Industrial Quality Improvement. Springer, 93--123.Google ScholarGoogle Scholar
  18. M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, and T. Stützl. 2016. The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives 3 (2016), 43 -- 58.Google ScholarGoogle ScholarCross RefCross Ref
  19. N. S. C. Merleau and M. Smerlak. 2021. A simple evolutionary algorithm guided by local mutations for an eficient RNA design. In Genetic and Evolutionary Computation Conference, GECCO '21. ACM, 1027--1034. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, and G. Rudolph. 2011. Exploratory Landscape Analysis. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '11. ACM, 829--836. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L.J.V. Miranda. 2018. PySwarms: a research toolkit for Particle Swarm Optimization in Python. Journal of Open Source Software 3, 21 (2018), 433. Google ScholarGoogle ScholarCross RefCross Ref
  22. J. A. Nelder and R. Mead. 1965. A Simplex Method for Function Minimization. Comput. J. 7, 4 (01 1965), 308--313. arXiv:https://academic.oup.com/comjnl/article-pdf/7/4/308/1013182/7-4-308.pdf Google ScholarGoogle ScholarCross RefCross Ref
  23. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825--2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. J. D. Powell. 1964. An eficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 2 (01 1964), 155--162. Google ScholarGoogle ScholarCross RefCross Ref
  25. Q. Renau, C. Doerr, J. Dreo, and B. Doerr. 2020. Exploratory Landscape Analysis is Strongly Sensitive to the Sampling Strategy. In Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5--9, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12270). Springer, 139--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Q. Renau, J. Dreo, C. Doerr, and B. Doerr. 2019. Expressiveness and robustness of landscape features. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '19 (Companion). ACM, 2048--2051. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Q. Renau, J. Dreo, A. Peres, Y. Semet, C. Doerr, and B. Doerr. 2022. GECCO2022 Automated Algorithm Selection for Radar Network Configuration (Version V0) [Data set]. Google ScholarGoogle ScholarCross RefCross Ref
  28. I.M. Sobol'. 1967. On the distribution of points in a cube and the approximate evaluation of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (Jan. 1967), 86--112. Google ScholarGoogle ScholarCross RefCross Ref
  29. R. Storn and K.V. Price. 1997. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. Journal of Global Optimization 11, 4 (1997), 341--359. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. van Rijn, H. Wang, M. van Leeuwen, and T. Bäck. 2016. Evolving the structure of Evolution Strategies. In 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016. IEEE, 1--8. Google ScholarGoogle ScholarCross RefCross Ref
  31. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C J Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261--272. Google ScholarGoogle ScholarCross RefCross Ref
  32. Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck. 2022. IOHanalyzer: Detailed Performance Analysis for Iterative Optimization Heuristic. ACM Transactions on Evolutionary Learning and Optimization (2022). To appear. Free version available at https://arxiv.org/abs/2007.03953.Google ScholarGoogle Scholar

Index Terms

  1. Automated algorithm selection for radar network configuration

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '22: Proceedings of the Genetic and Evolutionary Computation Conference
        July 2022
        1472 pages
        ISBN:9781450392372
        DOI:10.1145/3512290

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 July 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader