skip to main content
research-article

Improving Early Prognosis of Dementia Using Machine Learning Methods

Published:07 April 2022Publication History
Skip Abstract Section

Abstract

Early and precise prognosis of dementia is a critical medical challenge. The design of an optimal computational model that addresses this issue, and at the same time explains the underlying mechanisms that lead to output decisions, is an ongoing challenge. In this study, we focus on assessing the risk of an individual converting to Dementia in the short (next year) and long (one to five years) term, given only a few early-stage observations. Our goal is to develop a machine learning model that could assist the prediction of dementia from regular clinical data. The results show that combining various machine learning techniques together can successfully define ways to identify the risks of developing dementia over the following five years with accuracies considerably above average rates. These findings suggest that accurately developed models can be considered as a promising tool to improve early dementia prognosis.

REFERENCES

  1. [1] Amoroso Nicola, Diacono Domenico, Fanizzi Annarita, Rocca Marianna La, Monaco Alfonso, Lombardi Angela, Guaragnella Cataldo, Bellotti Roberto, Tangaro Sabina, Initiative Alzheimer’s Disease Neuroimaging, et al. 2018. Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. J. Neurosci. Methods 302 (2018), 39.Google ScholarGoogle Scholar
  2. [2] Artero Sylvaine, Ancelin Marie-Laure, Portet Florence, Dupuy A., Berr Claudine, Dartigues Jean-François, Tzourio Christophe, Rouaud Olivier, Poncet Michel, Pasquier Florence, et al. 2008. Risk profiles for mild cognitive impairment and progression to dementia are gender specific. J. Neurol. Neurosurg. Psych. 79, 9 (2008), 979984.Google ScholarGoogle Scholar
  3. [3] Battineni Gopi, Chintalapudi Nalini, and Amenta Francesco. 2019. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlock. 16 (2019), 100200.Google ScholarGoogle Scholar
  4. [4] Breiman Leo. 2001. Random forests. Mach. Learn. 45, 1 (2001), 532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Chen Tianqi, He Tong, Benesty Michael, Khotilovich Vadim, and Tang Yuan. 2015. Xgboost: Extreme gradient boosting. R Package, Version 0.4-2 (2015), 14.Google ScholarGoogle Scholar
  6. [6] Clarke Robert, Smith A. David, Jobst Kim A., Refsum Helga, Sutton Lesley, and Ueland Per M.. 1998. Folate, vitamin B12, and serum total homocysteine levels in confirmed alzheimer disease. Arch. Neurol. 55, 11 (1998), 14491455.Google ScholarGoogle Scholar
  7. [7] Cooper Claudia, Sommerlad Andrew, Lyketsos Constantine G., and Livingston Gill. 2015. Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis. Amer. J. Psych. 172, 4 (2015), 323334.Google ScholarGoogle Scholar
  8. [8] Cortes Corinna and Vapnik Vladimir. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273297.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Dietterich Thomas G.. 2000. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach. Learn. 40, 2 (2000), 139157.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Ding Yufeng and Simonoff Jeffrey S.. 2010. An investigation of missing data methods for classification trees applied to binary response data. J. Mach. Learn. Res. 11, 1 (2010).Google ScholarGoogle Scholar
  11. [11] Espinosa Ana, Alegret Montserrat, Valero Sergi, Vinyes-Junqué Georgina, Hernández Isabel, Mauleón Ana, Rosende-Roca Maitée, Ruiz Agustín, López Oscar, Tárraga Lluís, et al. 2013. A longitudinal follow-up of 550 mild cognitive impairment patients: Evidence for large conversion to dementia rates and detection of major risk factors involved. J. Alzheimer’s Dis. 34, 3 (2013), 769780.Google ScholarGoogle Scholar
  12. [12] Facal David, Valladares-Rodriguez Sonia, Lojo-Seoane Cristina, Pereiro Arturo X., Anido-Rifon Luis, and Juncos-Rabadán Onésimo. 2019. Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. Int. J. Geriatric Psych. 34, 7 (2019), 941949.Google ScholarGoogle Scholar
  13. [13] Friedman Jerome H.. 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 5 (2001), 11891232.Google ScholarGoogle Scholar
  14. [14] Galar Mikel, Fernandez Alberto, Barrenechea Edurne, Bustince Humberto, and Herrera Francisco. 2011. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.) 42, 4 (2011), 463484.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Hou Xiao-He, Feng Lei, Zhang Can, Cao Xi-Peng, Tan Lan, and Yu Jin-Tai. 2019. Models for predicting risk of dementia: A systematic review. J. Neurol. Neurosurg. Psych. 90, 4 (2019), 373379.Google ScholarGoogle Scholar
  16. [16] Huysmans Johan, Dejaeger Karel, Mues Christophe, Vanthienen Jan, and Baesens Bart. 2011. An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis. Supp. Syst. 51, 1 (2011), 141154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Islam Jyoti and Zhang Yanqing. 2018. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 5, 2 (2018), 2.Google ScholarGoogle Scholar
  18. [18] Jammeh Emmanuel A., Camille B. Carroll, Stephen W. Pearson, Escudero Javier, Anastasiou Athanasios, Zhao Peng, Chenore Todd, Zajicek John, and Ifeachor Emmanuel. 2018. Machine-learning based identification of undiagnosed dementia in primary care: A feasibility study. BJGP Open 2, 2 (2018).Google ScholarGoogle Scholar
  19. [19] Jo Taeho, Nho Kwangsik, and Saykin Andrew J.. 2019. Deep learning in Alzheimer’s disease: Diagnostic classification and prognostic prediction using neuroimaging data. Front. Aging Neurosci. 11 (2019), 220.Google ScholarGoogle Scholar
  20. [20] Kleinbaum David G., Dietz K., Gail M., Klein Mitchel, and Klein Mitchell. 2002. Logistic Regression. Springer.Google ScholarGoogle Scholar
  21. [21] Korolev Igor O., Symonds Laura L., Bozoki Andrea C., and Initiative Alzheimer’s Disease Neuroimaging. 2016. Predicting progression from mild cognitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification. PloS One 11, 2 (2016), e0138866.Google ScholarGoogle Scholar
  22. [22] Krithara Anastasia, Aisopos Fotis, Rentoumi Vassiliki, Nentidis Anastasios, Bougatiotis Konstantinos, Vidal Maria-Esther, Menasalvas Ernestina, Rodriguez-Gonzalez Alejandro, Samaras Eleftherios, Garrard Peter, et al. 2019. iasis: Towards heterogeneous big data analysis for personalized medicine. In Proceedings of the IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS’19). IEEE, 106111.Google ScholarGoogle Scholar
  23. [23] Lee Choong Ho and Yoon Hyung-Jin. 2017. Medical big data: Promise and challenges. Kidney Res. Clin. Pract. 36, 1 (2017), 3.Google ScholarGoogle Scholar
  24. [24] Li Hongming, Habes Mohamad, Wolk David A., Fan Yong, Initiative Alzheimer’s Disease Neuroimaging, et al. 2019. A deep learning model for early prediction of Alzheimer’s disease dementia based on hippocampal magnetic resonance imaging data. Alzheimer’s Dementia 15, 8 (2019), 10591070.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Lu Donghuan, Popuri Karteek, Ding Gavin Weiguang, Balachandar Rakesh, and Beg Mirza Faisal. 2018. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci. Rep. 8, 1 (2018), 113.Google ScholarGoogle Scholar
  26. [26] Luz Saturnino, Haider Fasih, Fuente Sofia de la, Fromm Davida, and MacWhinney Brian. 2020. Alzheimer’s dementia recognition through spontaneous speech: the ADReSS Challenge. Retrieved from https://arXiv:2004.06833.Google ScholarGoogle Scholar
  27. [27] Mallo Sabela C., Valladares-Rodriguez Sonia, Facal David, Lojo-Seoane Cristina, Fernández-Iglesias Manuel J., and Pereiro Arturo X.. 2020. Neuropsychiatric symptoms as predictors of conversion from MCI to dementia: A machine learning approach. Int. Psychogeriatr. 32, 3 (2020), 381392.Google ScholarGoogle Scholar
  28. [28] Maroco Joao, Silva Dina, Rodrigues Ana, Guerreiro Manuela, Santana Isabel, and Mendonça Alexandre de. 2011. Data mining methods in the prediction of dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 4, 1 (2011), 114.Google ScholarGoogle Scholar
  29. [29] Mitchell Alex J. and Shiri-Feshki Mojtaba. 2009. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatrica Scandinavica 119, 4 (2009), 252265.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Moradi Elaheh, Pepe Antonietta, Gaser Christian, Huttunen Heikki, Tohka Jussi, Initiative Alzheimer’s Disease Neuroimaging, et al. 2015. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104 (2015), 398412.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and Duchesnay E.. 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12 (2011), 28252830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Pellegrini Enrico, Ballerini Lucia, Hernandez Maria del C. Valdes, Chappell Francesca M., González-Castro Victor, Anblagan Devasuda, Danso Samuel, Muñoz-Maniega Susana, Job Dominic, Pernet Cyril, et al. 2018. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review. Alzheimer’s Dementia: Diagn. Assess. Dis. Monitor. 10 (2018), 519535.Google ScholarGoogle Scholar
  33. [33] Petersen R. C.. 2000. Mild cognitive impairment: Transition between aging and Alzheimer’s disease. Neurologia 15, 3 (2000), 93101.Google ScholarGoogle Scholar
  34. [34] Petersen Ronald C., Caracciolo Barbara, Brayne Carol, Gauthier Serge, Jelic Vesna, and Fratiglioni Laura. 2014. Mild cognitive impairment: A concept in evolution. J. Internal Med. 275, 3 (2014), 214228.Google ScholarGoogle Scholar
  35. [35] Prince Martin James, Guerchet Maelenn Mari, and Prina Matthew. 2015. The Epidemiology and Impact of Dementia: Current State and Future Trends. WHO Thematic Briefing. World Health Organization.Google ScholarGoogle Scholar
  36. [36] Rokach Lior and Maimon Oded Z.. 2008. Data Mining with Decision Trees: Theory and Applications. Vol. 69. World Scientific, Singapore.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] So Aram, Hooshyar Danial, Park Kun Woo, and Lim Heui Seok. 2017. Early diagnosis of dementia from clinical data by machine learning techniques. Appl. Sci. 7, 7 (2017), 651.Google ScholarGoogle Scholar
  38. [38] Stamate Daniel, Alghamdi Wajdi, Ogg Jeremy, Hoile Richard, and Murtagh Fionn. 2018. A machine learning framework for predicting dementia and mild cognitive impairment. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA’18). IEEE, 671678.Google ScholarGoogle Scholar
  39. [39] Tang Eugene Y. H., Harrison Stephanie L., Errington Linda, Gordon Mark F., Visser Pieter Jelle, Novak Gerald, Dufouil Carole, Brayne Carol, Robinson Louise, Launer Lenore J., et al. 2015. Current developments in dementia risk prediction modelling: An updated systematic review. PLoS One 10, 9 (2015), e0136181.Google ScholarGoogle Scholar
  40. [40] Tombaugh Tom N. and McIntyre Nancy J.. 1992. The mini-mental state examination: A comprehensive review. J. Amer. Geriatr. Soc. 40, 9 (1992), 922935.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Warren-Gash C.. 2019. Dementia Risk Prediction Models: What Do Policymakers Need to Know? PHG Foundation, University of Cambridge, Cambridge, UK.Google ScholarGoogle Scholar

Index Terms

  1. Improving Early Prognosis of Dementia Using Machine Learning Methods

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Computing for Healthcare
        ACM Transactions on Computing for Healthcare  Volume 3, Issue 3
        July 2022
        251 pages
        EISSN:2637-8051
        DOI:10.1145/3514183
        Issue’s Table of Contents

        Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 April 2022
        • Revised: 1 November 2021
        • Accepted: 1 November 2021
        • Received: 1 May 2021
        Published in health Volume 3, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text

      HTML Format

      View this article in HTML Format .

      View HTML Format