skip to main content
research-article
Open Access

Artificial intelligence for synthetic biology

Published:25 April 2022Publication History
Skip Abstract Section

Abstract

The opportunities and challenges of adapting and applying AI principles to synbio.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alipanahi, B., Delong, A., Weirauch, M., and Frey, B. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology 33, 8 (Aug. 2015), 831--838 Google ScholarGoogle ScholarCross RefCross Ref
  2. Bilitchenko, L., Liu, A., and Densmore, D. The Eugene language for synthetic biology. Methods in Enzymology 498 (2011), 153--172 Google ScholarGoogle ScholarCross RefCross Ref
  3. Cameron, D., Bashor, C., and Collins, J. A brief history of synthetic biology. Nature Reviews Microbiology 12, 5 (Apr 2014), 381--390 Google ScholarGoogle ScholarCross RefCross Ref
  4. Carbonell, P., Radivojevic, T., and Martín, H. Opportunities at the intersection of synthetic biology, machine learning, and automation. ACS Synthetic Biology 8, 7 (Jul. 2019), 1474--1477 Google ScholarGoogle ScholarCross RefCross Ref
  5. Chen, Y., et al. Automated "cells-to-peptides" sample preparation workflow for high-throughput, quantitative proteomic assays of microbes. J. Proteome Research 18, 10 (Oct. 2019), 3752--3761 Google ScholarGoogle ScholarCross RefCross Ref
  6. Chubukov, V., Mukhopadhyay, A., Petzold, C., Keasling, J., and Martín, H. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Systems Biology and Applications 2 (Apr. 2016), 16009 Google ScholarGoogle ScholarCross RefCross Ref
  7. Croll, T., Sammito, M., Kryshtafovych, A., and Read, R. Evaluation of template-based modeling in CASP13. Proteins 87, 12 (Aug. 2019), 1113--1127 Google ScholarGoogle ScholarCross RefCross Ref
  8. Cumbers, J. Meet Eight Tech Titans Investing in Synthetic Biology; https://bit.ly/3ItFelLGoogle ScholarGoogle Scholar
  9. Devopedia. ImageNet, 2019; https://devopedia.org/imagenetGoogle ScholarGoogle Scholar
  10. DiEuliis, D., Terrell, P., and Emanuel, P. Breaching the department of defense's biotech bottleneck. Health Security 18, 2 (2020), 139--144 Google ScholarGoogle ScholarCross RefCross Ref
  11. Doudna, J. and Charpentier, E. Genome editing: The new frontier of genome engineering with CRISPR-Cas9. Science 346, 6213 (Nov. 2014), 1258096 Google ScholarGoogle ScholarCross RefCross Ref
  12. Eastman, P., Shi, J., Ramsundar, B., and Pande, V. Solving the RNA design problem with reinforcement learning. PLoS Computational Biology 14, 6 (Jun. 2018), e1006176 Google ScholarGoogle ScholarCross RefCross Ref
  13. El Karoui, M., Hoyos-Flight, M., and Fletcher, L. Future trends in synthetic biology---a report. Frontiers in bioengineering and biotechnology 7 (Aug. 2019), 175 Google ScholarGoogle ScholarCross RefCross Ref
  14. Gach, P., Iwai, K., Kim, P., Hillson, N., and Singh, A. Droplet microfluidics for synthetic biology. Lab on A Chip 17, 20 (Oct. 2017), 3388--3400 Google ScholarGoogle ScholarCross RefCross Ref
  15. Gardner, T. Synthetic biology: From hype to impact. Trends in Biotechnology 31, 3 (Mar. 2013), 123--125 Google ScholarGoogle ScholarCross RefCross Ref
  16. Gaw, N., et al. Integration of machine learning and mechanistic models accurately predicts variation in cell density of glioblastoma using multiparametric MRI. Scientific Reports 9, 1 (Jul. 2019), 10063 Google ScholarGoogle ScholarCross RefCross Ref
  17. Gersbach, C. Genome engineering: The next genomic revolution. Nature Methods 11, 10 (Oct 2014), 1009--1011 Google ScholarGoogle ScholarCross RefCross Ref
  18. Gupta, S., Dukkipati, A., and Castro, R. Restricted boltzmann stochastic block model: A generative model for networks with attributes. arXiv (Nov. 2019).Google ScholarGoogle Scholar
  19. Häse, F., Roch, L., and Aspuru-Guzik, A. next-generation experimentation with self-driving laboratories. Trends in Chemistry 1, 3 (Mar 2019), 282--291. Google ScholarGoogle ScholarCross RefCross Ref
  20. Jessop-Fabre, M. and Sonnenschein, N. Improving reproducibility in synthetic biology. Frontiers in bioengineering and biotechnology 7 (Feb. 2019), 18 Google ScholarGoogle ScholarCross RefCross Ref
  21. Karr, J., et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 2 (Jul. 2012), 389--401 Google ScholarGoogle ScholarCross RefCross Ref
  22. Kim, G., Kim, W., Kim, H., and Lee, S. Machine learning applications in systems metabolic engineering. Current Opinion in Biotechnology 64 (Sep. 2019), 1--9 Google ScholarGoogle ScholarCross RefCross Ref
  23. Lawson, C., et al. Machine learning for metabolic engineering: A review. Metabolic Engineering 63 (2021), 34--60 Google ScholarGoogle ScholarCross RefCross Ref
  24. Le, K., et al. A novel mammalian cell line development platform utilizing nanofluidics and optoelectro positioning technology. Biotechnology Progress 34, 6 (Sept. 2018), 1438--1446 Google ScholarGoogle ScholarCross RefCross Ref
  25. Lessler, J., Azman, A., Grabowski, M., Salje, H., and Rodriguez-Barraquer, I. Trends in the mechanistic and dynamic modeling of infectious diseases. Current Epidemiology Reports 3, 3 (Jul. 2016), 212--222 Google ScholarGoogle ScholarCross RefCross Ref
  26. Lohr, S. For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights.; https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.htmlGoogle ScholarGoogle Scholar
  27. Ma, T. and Zhang, A. Incorporating biological knowledge with factor graph neural network for interpretable deep learning. arXiv (Jun 2019).Google ScholarGoogle Scholar
  28. Morrell, W., et al. The experiment data depot: A web-based software tool for biological experimental data storage, sharing, and visualization. ACS synthetic biology [electronic resource] 6, 12 (Dec 2017), 2248--2259. Google ScholarGoogle ScholarCross RefCross Ref
  29. National Academies Press. Committee on industrialization of biology: A roadmap to accelerate the advanced manufacturing of chemicals, board on chemical sciences, technology, board on life sciences, division on earth, life studies, and national research council. Industrialization of biology: A roadmap to accelerate the advanced manufacturing of chemicals (2015) Google ScholarGoogle ScholarCross RefCross Ref
  30. Pedersen, M. and Phillips, A. Towards programming languages for genetic engineering of living cells. Journal of the Royal Society, Interface 6 Suppl 4 (Aug. 2009), S437--50 Google ScholarGoogle ScholarCross RefCross Ref
  31. Presnell, K. and Alper, H. Systems metabolic engineering meets machine learning: A new era for data-driven metabolic engineering. Biotechnology J. 14, 9 (Sep. 2019), e1800416 Google ScholarGoogle ScholarCross RefCross Ref
  32. Rogati, M. The AI Hierarchy of Needs (2017); https://hackernoon.com/the-ai-hierarchy-of-needs-18f111fcc007Google ScholarGoogle Scholar
  33. Shapira, P., Kwon, S., and Youtie, J. Tracking the emergence of synthetic biology. Scientometrics 112, 3 (Jul. 2017), 1439--1469 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Si, T. and Zhao, H. A brief overview of synthetic biology research programs and roadmap studies in the United States. Synthetic and Systems Biotechnology 1, 4 (Dec. 2016), 258--264 Google ScholarGoogle ScholarCross RefCross Ref
  35. Unthan, S., Radek, A., Wiechert, W., Oldiges, M., and Noack, S. Bioprocess automation on a Mini Pilot Plant enables fast quantitative microbial phenotyping. Microbial Cell Factories 14, 1 (Dec. 2015), 216 Google ScholarGoogle ScholarCross RefCross Ref
  36. Wang, M., Tai, C., Weinan, E., and Wei, L. DeFine: deep convolutional neural networks accurately quantify intensities of transcription factorDNA binding and facilitate evaluation of functional non-coding variants. Nucleic Acids Research 46, 11 (Jun. 2018), e69 Google ScholarGoogle ScholarCross RefCross Ref
  37. Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T.R., and Mukhopadhyay, A. Engineering robust production microbes for large-scale cultivation. Trends Microbiology 27, 6 (Jun 2019), 524--537 Google ScholarGoogle ScholarCross RefCross Ref
  38. Yaman, F., Bhatia, S., Adler, A., Densmore, D., and Beal, J. Automated selection of synthetic biology parts for genetic regulatory networks. ACS Synthetic Biology 1, 8 (Aug. 2012), 332--344 Google ScholarGoogle ScholarCross RefCross Ref
  39. Zitnik, M. and Leskovec, J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics 33, 14 (Jul. 2017), i190--i198 Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Artificial intelligence for synthetic biology

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Communications of the ACM
        Communications of the ACM  Volume 65, Issue 5
        May 2022
        108 pages
        ISSN:0001-0782
        EISSN:1557-7317
        DOI:10.1145/3533590
        Issue’s Table of Contents

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Popular
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format