skip to main content
10.1145/3491102.3517595acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Does Mode of Digital Contact Tracing Affect User Willingness to Share Information? A Quantitative Study

Authors Info & Claims
Published:28 April 2022Publication History

ABSTRACT

Digital contact tracing can limit the spread of infectious diseases. Nevertheless, barriers remain to attain sufficient adoption. In this study, we investigate how willingness to participate in contact tracing is affected by two critical factors: the modes of data collection and the type of data collected. We conducted a scenario-based survey study among 220 respondents in the United States (U.S.) to understand their perceptions about contact tracing associated with automated and manual contact tracing methods. The findings indicate a promising use of smartphones and a combination of public health officials and medical health records as information sources. Through a quantitative analysis, we describe how different modalities and individual demographic factors may affect user compliance when participants are asked to provide four key information pieces for contact tracing.

References

  1. [1] Altmann, S., Milsom, L., Zillessen, H., Blasone, R., Gerdon, F., Bach, R., Kreuter, F., Nosenzo, D., Toussaert, S., and Abeler, J. Acceptability of app-based contact tracing for covid-19: Cross-country survey study. JMIR mHealth and uHealth, 8(8):e19857, 2020.Google ScholarGoogle Scholar
  2. [2] American Academy of Family Physicians. Covid-19 vaccine.Google ScholarGoogle Scholar
  3. [3] Association of Public Health Laboratories. Exposure notifications, 2020.Google ScholarGoogle Scholar
  4. [4] Bausell, R. B. and Li, Y.-F. Power analysis for experimental research: a practical guide for the biological, medical and social sciences. Cambridge University Press, 2002.Google ScholarGoogle Scholar
  5. [5] Bentley, F. R., Peesapati, S. T., and Church, K. ” i thought she would like to read it” exploring sharing behaviors in the context of declining mobile web use. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pages 1893–1903, 2016.Google ScholarGoogle Scholar
  6. [6] Braithwaite, I., Callender, T., Bullock, M., and Aldridge, R. W. Automated and partly automated contact tracing: a systematic review to inform the control of covid-19. The Lancet Digital Health, 2020.Google ScholarGoogle Scholar
  7. [7] Braun, V. and Clarke, V. Using thematic analysis in psychology. Qualitative research in psychology, 3(2):77–101, 2006.Google ScholarGoogle Scholar
  8. [8] Centers for Disease Control and Prevention. 2020 case counts in the us.Google ScholarGoogle Scholar
  9. [9] Centers for Disease Control and Prevention. Case investigation and contact tracing: Part of a multipronged approach to fight the covid-19 pandemic, 2020.Google ScholarGoogle Scholar
  10. [10] Centers for Disease Control and Prevention. Digital contact tracing tools, 2020.Google ScholarGoogle Scholar
  11. [11] Centers for Disease Control and Prevention. Preliminary criteria for the evaluation of digital contact tracing tools for covid-19, 2020.Google ScholarGoogle Scholar
  12. [12] Centers for Disease Control and Prevention. Training case investigators and contact tracers, 2021.Google ScholarGoogle Scholar
  13. [13] Davis, S. Contact tracing apps: Extra risks for women and marginalized groups. Health and Human Rights Journal, 2020.Google ScholarGoogle Scholar
  14. [14] Ferretti, L., Wymant, C., Kendall, M., Zhao, L., Nurtay, A., Abeler-Dörner, L., Parker, M., Bonsall, D., and Fraser, C. Quantifying sars-cov-2 transmission suggests epidemic control with digital contact tracing. Science, 368(6491), 2020.Google ScholarGoogle Scholar
  15. [15] Gillmor, D. K. Principles for technology-assisted contact-tracing. ACLU white paper, 2020.Google ScholarGoogle Scholar
  16. [16] Google. Exposure notifications: Using technology to help public health authorities fight covid‑19.Google ScholarGoogle Scholar
  17. [17] Government of Singapore. Tracetogether, safer together, 2020.Google ScholarGoogle Scholar
  18. [18] Hassandoust, F., Akhlaghpour, S., and Johnston, A. C. Individuals’ privacy concerns and adoption of contact tracing mobile applications in a pandemic: A situational privacy calculus perspective. Journal of the American Medical Informatics Association, 28(3):463–471, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] James, G., Witten, D., Hastie, T., and Tibshirani, R. An introduction to statistical learning, volume 112. Springer, 2013.Google ScholarGoogle Scholar
  20. [20] Jonker, M., de Bekker-Grob, E., Veldwijk, J., Goossens, L., Bour, S., and Rutten-Van Mölken, M. Covid-19 contact tracing apps: Predicted uptake in the netherlands based on a discrete choice experiment. JMIR mHealth and uHealth, 8(10):e20741, 2020.Google ScholarGoogle Scholar
  21. [21] Kahn, J. P. et al. Digital contact tracing for pandemic response: Ethics and governance guidance. Johns Hopkins University Press, 2020.Google ScholarGoogle Scholar
  22. [22] Kaptchuk, G., Goldstein, D. G., Hargittai, E., Hofman, J., and Redmiles, E. M. How good is good enough for covid19 apps. The influence of benefits, accuracy, and privacy on willingness to adopt, 2020.Google ScholarGoogle Scholar
  23. [23] Keeling, M. J., Hollingsworth, T. D., and Read, J. M. Efficacy of contact tracing for the containment of the 2019 novel coronavirus (covid-19). J Epidemiol Community Health, 74(10):861–866, 2020.Google ScholarGoogle Scholar
  24. [24] Kretzschmar, M. E., Rozhnova, G., Bootsma, M. C., van Boven, M., van de Wijgert, J. H., and Bonten, M. J. Impact of delays on effectiveness of contact tracing strategies for covid-19: a modelling study. The Lancet Public Health, 5(8):e452–e459, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Larus, J. et al. Joint statement on contact tracing: Date 19th april 2020, 2020.Google ScholarGoogle Scholar
  26. [26] Lee, B. and Raszka, W. V. Covid-19 transmission and children: the child is not to blame. Pediatrics, 146(2), 2020.Google ScholarGoogle Scholar
  27. [27] Lewis, N. M., Chu, V. T., Ye, D., Conners, E. E., Gharpure, R., Laws, R. L., Reses, H. E., Freeman, B. D., Fajans, M., Rabold, E. M., et al. Household transmission of sars-cov-2 in the united states. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2020.Google ScholarGoogle Scholar
  28. [28] Li, C., Chen, L. J., Chen, X., Zhang, M., Pang, C. P., and Chen, H. Retrospective analysis of the possibility of predicting the covid-19 outbreak from internet searches and social media data, china, 2020. Eurosurveillance, 25(10):2000199, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Lockey, S., Edwards, M. R., Hornsey, M. J., Gillespie, N., Akhlaghpour, S., and Colville, S. Profiling adopters (and non-adopters) of a contact tracing mobile application: insights from australia. International Journal of Medical Informatics, 149:104414, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Lu, T. and Reis, B. Y. Internet search patterns reveal clinical course of covid-19 disease progression and pandemic spread across 32 countries. NPJ digital medicine, 4(1):1–9, 2021.Google ScholarGoogle Scholar
  31. [31] Mayer, R. C., Davis, J. H., and Schoorman, F. D. An integrative model of organizational trust. Academy of management review, 20(3):709–734, 1995.Google ScholarGoogle Scholar
  32. [32] McClain, C. and Rainie, L. The challenges of contact tracing as us battles covid-19. Pew research center, 2020.Google ScholarGoogle Scholar
  33. [33] McKnight, D. H., Choudhury, V., and Kacmar, C. Developing and validating trust measures for e-commerce: An integrative typology. Information systems research, 13(3):334–359, 2002.Google ScholarGoogle Scholar
  34. [34] Megnin-Viggars, O., Carter, P., Melendez-Torres, G., Weston, D., and Rubin, G. J. Facilitators and barriers to engagement with contact tracing during infectious disease outbreaks: A rapid review of the evidence. PloS one, 15(10):e0241473, 2020.Google ScholarGoogle Scholar
  35. [35] Metlay, J. P., Haas, J. S., Soltoff, A. E., and Armstrong, K. A. Household transmission of sars-cov-2. JAMA Network Open, 4(2):e210304–e210304, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Michael, M., Amanda, M.-F., Sara, C., Erin E, D., and Pounders, K. Health literacy and health information technology adoption: The potential for a new digital divide. Journal of Medical Internet Research, (10):e264, 2016.Google ScholarGoogle Scholar
  37. [37] Michaud, C. Global burden of infectious diseases. Encyclopedia of Microbiology, page 444, 2009.Google ScholarGoogle Scholar
  38. [38] National Academy for State Health Policy. State approaches to contact tracing during the covid-19 pandemic.Google ScholarGoogle Scholar
  39. [39] Njozing, B. N., Edin, K. E., San Sebastián, M., and Hurtig, A.-K. ” if the patients decide not to tell what can we do?”-tb/hiv counsellors’ dilemma on partner notification for hiv. BMC international health and human rights, 11(1):1–11, 2011.Google ScholarGoogle Scholar
  40. [40] NOVID. New feature: 100% anonymous contact tracing, 2020.Google ScholarGoogle Scholar
  41. [41] Nurgalieva, L., Ryan, S., and Doherty, G. Attitudes towards covid-19 contact tracing apps: a cross-national survey. IEEE Access, 2021.Google ScholarGoogle Scholar
  42. [42] Perez-Fuentes, M. D. C., Molero Jurado, M. d. M., Oropesa Ruiz, N. F., Martos Martinez, A., Simon Marquez, M. d. M., Herrera-Peco, I., and Gazquez Linares, J. J. Questionnaire on perception of threat from covid-19. Journal of Clinical Medicine, 9(4):1196, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Peterman, T. A., Toomey, K. E., Dicker, L. W., Zaidi, A. A., Wroten, J. E., and Carolina, J. Partner notification for syphilis: a randomized, controlled trial of three approaches. Sexually transmitted diseases, 24(9):511–518, 1997.Google ScholarGoogle Scholar
  44. [44] Peterson, R. Constructing Effective Questionnaires. SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United States, 2000.Google ScholarGoogle Scholar
  45. [45] Pew Research Center. Key findings about americans’ views on covid-19 contact tracing.Google ScholarGoogle Scholar
  46. [46] Pew Research Center. Mobile fact sheet.Google ScholarGoogle Scholar
  47. [47] Phelan, C., Lampe, C., and Resnick, P. It’s creepy, but it doesn’t bother me. Proceedings of the 2016 CHI conference on human factors in computing systems, pages 5240–5251, 2016.Google ScholarGoogle Scholar
  48. [48] Qualtrics. Qualtrics. Available at: https://www.qualtrics.com.Google ScholarGoogle Scholar
  49. [49] Rajae, T., Emilien, S., Seth M, H., Stéphanie, V., Pierre, A., Francis, G., Dominuque, R., Alexandra, R., Anne-Déborah, B., and Julien, M. Early acceptability of a mobile app for contact tracing during the covid-19 pandemic in france: National web-based survey. JMIR mHealth and uHealth, (7):e27768, 2021.Google ScholarGoogle Scholar
  50. [50] Redmiles, E. M. User concerns & tradeoffs in technology-facilitated contact tracing. arXiv preprint arXiv:2004.13219, 2020.Google ScholarGoogle Scholar
  51. [51] Rikard, R., Thompson, M. S., McKinney, J., and Beauchamp, A. Examining health literacy disparities in the united states: a third look at the national assessment of adult literacy (naal). BMC Public Health, 16(1):1–11, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Sadique, M. Z., Edmunds, W. J., Smith, R. D., Meerding, W. J., De Zwart, O., Brug, J., and Beutels, P. Precautionary behavior in response to perceived threat of pandemic influenza. Emerging infectious diseases, 13(9):1307, 2007.Google ScholarGoogle Scholar
  53. [53] SaferMe. A new approach to pandemics, 2021.Google ScholarGoogle Scholar
  54. [54] Sanches, P., Tsaknaki, V., Rostami, A., and Brown, B. Under surveillance: Technology practices of those monitored by the state. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2020.Google ScholarGoogle Scholar
  55. [55] Sannon, S. and Cosley, D. Privacy, power, and invisible labor on amazon mechanical turk. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pages 1–12, 2019.Google ScholarGoogle Scholar
  56. [56] Shin, S.-Y., Seo, D.-W., An, J., Kwak, H., Kim, S.-H., Gwack, J., and Jo, M.-W. High correlation of middle east respiratory syndrome spread with google search and twitter trends in korea. Scientific reports, 6(1):1–7, 2016.Google ScholarGoogle Scholar
  57. [57] Sinha, P. and Paterson, A. E. Contact tracing: Can big tech come to the rescue, and if so, at what cost? EClinicalMedicine, 24, 2020.Google ScholarGoogle Scholar
  58. [58] Swanson, K. C., Altare, C., Wesseh, C. S., Nyenswah, T., Ahmed, T., Eyal, N., Hamblion, E. L., Lessler, J., Peters, D. H., and Altmann, M. Contact tracing performance during the ebola epidemic in liberia, 2014-2015. PLoS neglected tropical diseases, 12(9):e0006762, 2018.Google ScholarGoogle Scholar
  59. [59] The Associated Press. Anonymous contact tracing without the tracking, 2020.Google ScholarGoogle Scholar
  60. [60] The New York Times. Coronavirus in the u.s.: Latest map and case count.Google ScholarGoogle Scholar
  61. [61] Thorneloe, R., Epton, T., Fynn, W., Daly, M., Stanulewicz, N., Kassianos, A., Shorter, G. W., Moll, S.-J., Campbell, M., Sodergren, S., et al. Scoping review of mobile phone app uptake and engagement to inform digital contact tracing tools for covid-19. 2020.Google ScholarGoogle Scholar
  62. [62] TIME. Contact tracing apps were big tech’s best idea for fighting covid-19. why haven’t they helped?Google ScholarGoogle Scholar
  63. [63] Trivedi, A., Zakaria, C., Balan, R., Becker, A., Corey, G., and Shenoy, P. Wifitrace: Network-based contact tracing for infectious diseases using passive wifi sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 5(1):1–26, 2021.Google ScholarGoogle Scholar
  64. [64] Uzor, S., Jacques, J. T., Dudley, J. J., and Kristensson, P. O. Investigating the accessibility of crowdwork tasks on mechanical turk. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–14, 2021.Google ScholarGoogle Scholar
  65. [65] Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, china. Jama, 323(11):1061–1069, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Wirth, F. N., Johns, M., Meurers, T., and Prasser, F. Citizen-centered mobile health apps collecting individual-level spatial data for infectious disease management: Scoping review. JMIR mHealth and uHealth, 8(11):e22594, 2020.Google ScholarGoogle Scholar
  67. [67] World Health Organization. Ethical considerations to guide the use of digital proximity tracking technologies for covid-19 contact tracing: interim guidance, 28 may 2020. Technical report, World Health Organization, 2020.Google ScholarGoogle Scholar
  68. [68] World Health Organization. Statement on the second meeting of the international health regulations (2005) emergency committee regarding the outbreak of novel coronavirus (2019-ncov), 2020.Google ScholarGoogle Scholar
  69. [69] Yuen, S. Parliament: $13.8 million spent on SafeEntry, TraceTogether digital contact tracing tools. The Straits Times, Nov. 2020.Google ScholarGoogle Scholar
  70. [70] Zakaria, C., Trivedi, A., Cecchet, E., Chee, M., Shenoy, P., and Balan, R. Analyzing the impact of covid-19 control policies on campus occupancy and mobility via passive wifi sensing. ACM Transactions on Spatial Algorithms and Systems, 1(1), 2022.Google ScholarGoogle Scholar
  71. [71] Zhang, B., Kreps, S., McMurry, N., and McCain, R. M. Americans’ perceptions of privacy and surveillance in the covid-19 pandemic. Plos one, 15(12):e0242652, 2020.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Does Mode of Digital Contact Tracing Affect User Willingness to Share Information? A Quantitative Study

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
        April 2022
        10459 pages
        ISBN:9781450391573
        DOI:10.1145/3491102

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 April 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI PLAY '24
        The Annual Symposium on Computer-Human Interaction in Play
        October 14 - 17, 2024
        Tampere , Finland

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format