skip to main content
10.1145/3487552.3487851acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article

Unbiased experiments in congested networks

Published:02 November 2021Publication History

ABSTRACT

When developing a new networking algorithm, it is established practice to run a randomized experiment, or A/B test, to evaluate its performance. In an A/B test, traffic is randomly allocated between a treatment group, which uses the new algorithm, and a control group, which uses the existing algorithm. However, because networks are congested, both treatment and control traffic compete against each other for resources in a way that biases the outcome of these tests. This bias can have a surprisingly large effect; for example, in lab A/B tests with two widely used congestion control algorithms, the treatment appeared to deliver 150% higher throughput when used by a few flows, and 75% lower throughput when used by most flows---despite the fact that the two algorithms have identical throughput when used by all traffic.

Beyond the lab, we show that A/B tests can also be biased at scale. In an experiment run in cooperation with Netflix, estimates from A/B tests mistake the direction of change of some metrics, miss changes in other metrics, and overestimate the size of effects. We propose alternative experiment designs, previously used in online platforms, to more accurately evaluate new algorithms and allow experimenters to better understand the impact of congestion on their tests.

References

  1. Alberto Abadie, Joshua Angrist, and Guido Imbens. 2002. Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings. Econometrica 70, 1 (Jan. 2002), 27.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Aggarwal, S. Savage, and T. Anderson. 2000. Understanding the Performance of TCP Pacing. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), Vol. 3. IEEE, Tel Aviv, Israel, 1157--1165. Google ScholarGoogle ScholarCross RefCross Ref
  3. Julia Alexander. 2020. Amazon and Apple Are Reducing Streaming Quality to Lessen Broadband Strain in Europe. (March 2020). https://www.theverge.com/2020/3/20/21188072/amazon-prime-video-reduce-stream-quality-broadband-netflix-youtube-coronavirusGoogle ScholarGoogle Scholar
  4. Peter M. Aronow and Cyrus Samii. 2017. Estimating average causal effects under general interference, with application to a social network experiment. Ann. Appl. Stat. 11, 4 (12 2017), 1912--1947. Google ScholarGoogle ScholarCross RefCross Ref
  5. Rukshani Athapathu, Ranysha Ware, Aditya Abraham Philip, Srinivasan Seshan, and Justine Sherry. 2020. Prudentia: Measuring Congestion Control Harm on the Internet. 2. http://www.justinesherry.com/papers/athapathu-n2women20.pdfGoogle ScholarGoogle Scholar
  6. Susan Athey, Dean Eckles, and Guido W. Imbens. 2018. Exact p-Values for Network Interference. J. Amer. Statist. Assoc. 113, 521 (2018), 230--240. arXiv:https://doi.org/10.1080/01621459.2016.1241178 Google ScholarGoogle ScholarCross RefCross Ref
  7. Pat Bajari, Brian Burdick, Guido Imbens, James McQueen, Thomas Richardson, and Ido Rosen. 2019. Multiple Randomization Designs for Interference. (2019). https://assets.amazon.science/c1/94/0d6431bf46f7978295d245dd6e06/double-randomized-online-experiments.pdfGoogle ScholarGoogle Scholar
  8. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm, and R. H. Katz. 1998. TCP Behavior of a Busy Internet Server: Analysis and Improvements. In Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No. 98, Vol. 1. 252--262 vol.1. Google ScholarGoogle ScholarCross RefCross Ref
  9. Guillaume Basse, Avi Feller, and Panagiotis Toulis. 2019. Randomization tests of causal effects under interference. Biometrika 106, 2 (02 2019), 487--494. arXiv:https://academic.oup.com/biomet/article-pdf/106/2/487/28575447/asy072.pdf Google ScholarGoogle ScholarCross RefCross Ref
  10. Guillaume W. Basse, Hossein Azari Soufiani, and Diane Lambert. 2016. Randomization and The Pernicious Effects of Limited Budgets on Auction Experiments. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016 (JMLR Workshop and Conference Proceedings), Arthur Gretton and Christian C. Robert (Eds.), Vol. 51. JMLR.org, 1412--1420. http://proceedings.mlr.press/v51/basse16b.htmlGoogle ScholarGoogle Scholar
  11. Neda Beheshti, Yashar Ganjali, Monia Ghobadi, Nick McKeown, and Geoff Salmon. 2008. Experimental Study of Router Buffer Sizing. In Proceedings of the 8th ACM SIGCOMM Conference on Internet Measurement (IMC '08). ACM, New York, NY, USA, 197--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Neda Beheshti, Petr Lapukhov, and Yashar Ganjali. 2019. Buffer Sizing Experiments at Facebook. In Proceedings of the 2019 Workshop on Buffer Sizing. ACM, Palo Alto CA USA, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Thomas Blake and Dominic Coey. 2014. Why Marketplace Experimentation is Harder than It Seems: The Role of Test-Control Interference. In Proceedings of the Fifteenth ACM Conference on Economics and Computation (EC '14). Association for Computing Machinery, New York, NY, USA, 567--582. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Iavor Bojinov, David Simchi-Levi, and Jinglong Zhao. 2021. Design and Analysis of Switchback Experiments. arXiv:2009.00148 [stat] (Jan. 2021). arXiv:stat/2009.00148 http://arxiv.org/abs/2009.00148Google ScholarGoogle Scholar
  15. Bob Briscoe. 2007. Flow Rate Fairness: Dismantling a Religion. ACM SIGCOMM Computer Communication Review 37, 2 (March 2007), 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul Gandhi. 2019. When to Use and When Not to Use BBR: An Empirical Analysis and Evaluation Study. In Proceedings of the Internet Measurement Conference. ACM, Amsterdam Netherlands, 130--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2017. BBR: Congestion-Based Congestion Control. Commun. ACM 60, 2 (Jan. 2017), 58--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Neal Cardwell, Yuchung Cheng, Soheil Hassas Yeganeh, Priyaranjan Jha, Yousuk Seung, Kevin Yang, Ian Swett, Victor Vasiliev, Bin Wu, Luke Hsiao, Matt Mathis, and Van Jacobson. 2019. BBRv2: A Model-Based Congestion Control Performance Optimizations. (Nov. 2019). https://www.ietf.org/proceedings/106/slides/slides-106-iccrg-update-on-bbrv2-00Google ScholarGoogle Scholar
  19. Erik Carlsson and Eirini Kakogianni. 2018. Smoother Streaming with BBR. (Aug. 2018). https://engineering.atspotify.com/2018/08/31/smoother-streaming-with-bbr/Google ScholarGoogle Scholar
  20. Nicholas Chamandy. 2016. Experimentation in a Ridesharing Marketplace. (Dec 2016). https://eng.lyft.com/experimentation-in-a-ridesharing-marketplace-f75a9c4fcf01Google ScholarGoogle Scholar
  21. Bruno Crépon, Esther Duflo, Marc Gurgand, Roland Rathelot, and Philippe Zamora. 2013. Do Labor Market Policies Have Displacement Effects? Evidence from a Clustered Randomized Experiment *. The Quarterly Journal of Economics 128, 2 (May 2013), 531--580. Google ScholarGoogle ScholarCross RefCross Ref
  22. Nikos Diamantopoulos, Jeffrey Wong, David Issa Mattos, Ilias Gerostathopoulos, Matthew Wardrop, Tobias Mao, and Colin McFarland. 2019. Engineering for a Science-Centric Experimentation Platform. arXiv:1910.03878 [cs] (Oct. 2019). arXiv:cs/1910.03878 http://arxiv.org/abs/1910.03878Google ScholarGoogle Scholar
  23. Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, P Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control. In NSDI. 15.Google ScholarGoogle Scholar
  24. Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi. 2011. Proportional Rate Reduction for TCP. In Internet Measurement Conference. 15.Google ScholarGoogle Scholar
  25. Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal, Arvind Jain, and Natalia Sutin. 2010. An Argument for Increasing TCP's Initial Congestion Window. ACM SIGCOMM Computer Communication Review 40, 3 (June 2010), 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Eric Dumazet. 2013. Pkt_sched: Fq: Fair Queue Packet Scheduler [LWN.Net]. (Aug. 2013). https://lwn.net/Articles/564825/Google ScholarGoogle Scholar
  27. Eric Dumazet. 2013. Tcp: TSO Packets Automatic Sizing [LWN.Net]. (Aug. 2013). https://lwn.net/Articles/564979/Google ScholarGoogle Scholar
  28. Dean Eckles, Brian Karrer, and Johan Ugander. 2016. Design and Analysis of Experiments in Networks: Reducing Bias from Interference. Journal of Causal Inference 5, 1 (Feb. 2016). Google ScholarGoogle ScholarCross RefCross Ref
  29. Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh Govindan. 2013. Reducing Web Latency: The Virtue of Gentle Aggression. In SIGCOMM. 12.Google ScholarGoogle Scholar
  30. Ken Florance. 2020. Reducing Netflix Traffic Where It's Needed While Maintaining the Member Experience. (March 2020). https://about.netflix.com/en/news/reducing-netflix-traffic-where-its-neededGoogle ScholarGoogle Scholar
  31. Andrew Gelman and Jennifer Hill. 2006. Causal Inference Using Regression on the Treatment Variable. In Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge, 167--198. Google ScholarGoogle ScholarCross RefCross Ref
  32. Peter Glynn, Ramesh Johari, and Mohammad Rasouli. 2020. Adaptive experimental design with temporal interference: A maximum likelihood approach. arXiv preprint arXiv:2006.05591 (2020).Google ScholarGoogle Scholar
  33. Hadas Gold. 2020. Netflix and YouTube Are Slowing down in Europe to Keep the Internet from Breaking. (March 2020). https://www.cnn.com/2020/03/19/tech/netflix-internet-overload-eu/index.htmlGoogle ScholarGoogle Scholar
  34. Nirmal Govind. 2018. A/B Testing and Beyond: Improving the Netflix Streaming Experience with Experimentation and Data.... (June 2018). https://netflixtechblog.com/a-b-testing-and-beyond-improving-the-netflix-streaming-experience-with-experimentation-and-data-5b0ae9295bdfGoogle ScholarGoogle Scholar
  35. Ilya Grigorik. 2013. HTTP: HTTP/1.X - High Performance Browser Networking (O'Reilly). (2013). https://hpbn.co/http1x/#using-multiple-tcp-connectionsGoogle ScholarGoogle Scholar
  36. Ilya Grigorik and Surma. 2019. Introduction to HTTP/2 | Web Fundamentals. (Sept. 2019). https://developers.google.com/web/fundamentals/performance/http2#request_and_response_multiplexingGoogle ScholarGoogle Scholar
  37. Huan Gui, Ya Xu, Anmol Bhasin, and Jiawei Han. 2015. Network A/B Testing: From Sampling to Estimation. In Proceedings of the 24th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Florence Italy, 399--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. M. E. Halloran and C. J. Struchiner. 1995. Causal Inference in Infectious Diseases. Epidemiology (Cambridge, Mass.) 6, 2 (March 1995), 142--151. Google ScholarGoogle ScholarCross RefCross Ref
  39. David Holtz, Ruben Lobel, Inessa Liskovich, and Sinan Aral. 2020. Reducing Interference Bias in Online Marketplace Pricing Experiments. arXiv:2004.12489 [econ, stat] (April 2020). arXiv:econ, stat/2004.12489 http://arxiv.org/abs/2004.12489Google ScholarGoogle Scholar
  40. David Holtz, Ruben Lobel, Inessa Liskovich, and Sinan Aral. 2020. Reducing Interference Bias in Online Marketplace Pricing Experiments. (2020). arXiv:stat.ME/2004.12489Google ScholarGoogle Scholar
  41. Guanglei Hong and Stephen W. Raudenbush. 2006. Evaluating Kindergarten Retention Policy. J. Amer. Statist. Assoc. 101, 475 (Sept. 2006), 901--910. Google ScholarGoogle ScholarCross RefCross Ref
  42. Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. 2014. A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service. In Proceedings of the 2014 ACM Conference on SIGCOMM. ACM, Chicago Illinois USA, 187--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Per Hurtig, Habtegebreil Haile, Karl-Johan Grinnemo, Anna Brunstrom, Eneko Atxutegi, Fidel Liberal, and Ake Arvidsson. 2018. Impact of TCP BBR on CUBIC Traffic: A Mixed Workload Evaluation. In 2018 30th International Teletraffic Congress (ITC 30). IEEE, Vienna, 218--226. Google ScholarGoogle ScholarCross RefCross Ref
  44. Geoff Huston. 2018. TCP and BBR. (May 2018). https://ripe76.ripe.net/presentations/10-2018-05-15-bbr.pdfGoogle ScholarGoogle Scholar
  45. Guido W. Imbens and Donald B. Rubin. 2015. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press, USA.Google ScholarGoogle Scholar
  46. Alexey Ivanov. 2020. Evaluating BBRv2 on the Dropbox Edge Network. arXiv:2008.07699 [cs] (Aug. 2020). arXiv:cs/2008.07699 http://arxiv.org/abs/2008.07699Google ScholarGoogle Scholar
  47. Ramesh Johari, Hannah Li, Inessa Liskovich, and Gabriel Weintraub. 2020. Experimental design in two-sided platforms: An analysis of bias. arXiv preprint arXiv:2002.05670 (2020).Google ScholarGoogle Scholar
  48. Matt Joras and Yang Chi. 2020. How Facebook Is Bringing QUIC to Billions. (Oct. 2020). https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/Google ScholarGoogle Scholar
  49. Matt Joras and Yang Chi. 2020. How Facebook Is Bringing QUIC to Billions. (Oct. 2020). https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/Google ScholarGoogle Scholar
  50. Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigorous Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of the 2017 Internet Measurement Conference. ACM, London United Kingdom, 290--303. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Brian Karrer, Liang Shi, Monica Bhole, Matt Goldman, Tyrone Palmer, Charlie Gelman, Mikael Konutgan, and Feng Sun. 2020. Network Experimentation at Scale. arXiv:2012.08591 [cs, stat] (Dec. 2020). arXiv:cs, stat/2012.08591 http://arxiv.org/abs/2012.08591Google ScholarGoogle Scholar
  52. David Kastelman and Raghav Ramesh. 2018. Switchback Tests and Randomized Experimentation Under Network Effects at DoorDash. (Feb. 2018). https://medium.com/@DoorDash/switchback-tests-and-randomized-experimentation-under-network-effects-at-doordash-f1d938ab7c2aGoogle ScholarGoogle Scholar
  53. Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann. 2013. Online Controlled Experiments at Large Scale. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Chicago Illinois USA, 1168--1176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Ron Kohavi, Diane Tang, and Ya Xu. 2020. Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing (first ed.). Cambridge University Press. Google ScholarGoogle ScholarCross RefCross Ref
  55. Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay Is Simple and Effective for Congestion Control in the Datacenter. In Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. ACM, Virtual Event USA, 514--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ike Kunze, Jan Ruth, and Oliver Hohlfeld. 2020. Congestion Control in the Wild---Investigating Content Provider Fairness. IEEE Transactions on Network and Service Management 17, 2 (June 2020), 1224--1238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Raul Landa, Lorenzo Saino, Lennert Buytenhek, and João Taveira Araújo. 2021. Staying Alive: Connection Path Reselection at the Edge. In NSDI 2021. 20.Google ScholarGoogle Scholar
  58. Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi. 2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '17). Association for Computing Machinery, New York, NY, USA, 183--196. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Charles F. Manski. 2013. Identification of treatment response with social interactions. The Econometrics Journal 16, 1 (2013), S1--S23. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1368-423X.2012.00368.x Google ScholarGoogle Scholar
  60. Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun Singh, Drew Blaisdell, Yuandong Tian, Mohammad Alizadeh, and Eytan Bakshy. 2020. Real-World Video Adaptation with Reinforcement Learning. arXiv:2008.12858 [cs] (Aug. 2020). arXiv:cs/2008.12858 http://arxiv.org/abs/2008.12858Google ScholarGoogle Scholar
  61. Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. 2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. ACM, London United Kingdom, 537--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Whitney K. Newey and Kenneth D. West. 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55, 3 (1987), 703--708. Google ScholarGoogle ScholarCross RefCross Ref
  63. Garg Nitin. 2019. COPA Congestion Control for Video Performance. (Nov. 2019). https://engineering.fb.com/2019/11/17/video-engineering/copa/Google ScholarGoogle Scholar
  64. Samuel D. Oman and Esther Seiden. 1988. Switch-Back Designs. Biometrika 75, 1 (March 1988), 81--89. Google ScholarGoogle ScholarCross RefCross Ref
  65. James Robins. 1986. A New Approach to Causal Inference in Mortality Studies with a Sustained Exposure Period---Application to Control of the Healthy Worker Survivor Effect. Mathematical Modelling 7, 9-12 (Jan. 1986), 1393--1512. Google ScholarGoogle ScholarCross RefCross Ref
  66. Donald B Rubin. 2005. Causal inference using potential outcomes: Design, modeling, decisions. J. Amer. Statist. Assoc. 100, 469 (2005), 322--331.Google ScholarGoogle ScholarCross RefCross Ref
  67. Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, and Amin Vahdat. 2017. Carousel: Scalable Traffic Shaping at End Hosts. In The Conference of the ACM Special Interest Group. ACM Press, 404--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Martin Saveski, Jean Pouget-Abadie, Guillaume Saint-Jacques, Weitao Duan, Souvik Ghosh, Ya Xu, and Edoardo M. Airoldi. 2017. Detecting Network Effects: Randomizing Over Randomized Experiments. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Halifax NS Canada, 1027--1035. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Robert Sayre. 2008. Change Max-Persistent-Connections-per-Server to 6. (March 2008). https://bugzilla.mozilla.org/show_bug.cgi?id=423377Google ScholarGoogle Scholar
  70. Nate Schloss and Ben Maurer. 2017. This Browser Tweak Saved 60% of Requests to Facebook. (Jan. 2017). https://engineering.fb.com/2017/01/26/web/this-browser-tweak-saved-60-of-requests-to-facebook/Google ScholarGoogle Scholar
  71. Dominik Scholz, Benedikt Jaeger, Lukas Schwaighofer, Daniel Raumer, Fabien Geyer, and Georg Carle. 2018. Towards a Deeper Understanding of TCP BBR Congestion Control. In 2018 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, Zurich, Switzerland, 1--9. Google ScholarGoogle ScholarCross RefCross Ref
  72. Anant Shah. 2019. BBR Evaluation at a Large CDN. (Nov. 2019). https://blog.apnic.net/2019/11/01/bbr-evaluation-at-a-large-cdn/Google ScholarGoogle Scholar
  73. Steve Souders. 2008. Roundup on Parallel Connections. (March 2008). https://www.stevesouders.com/blog/2008/03/20/roundup-on-parallel-connections/Google ScholarGoogle Scholar
  74. Bruce Spang, Brady Walsh, Te-Yuan Huang, Tom Rusnock, Joe Lawrence, and Nick McKeown. 2019. Buffer Sizing and Video QoE Measurements at Netflix. In Proceedings of the 2019 Workshop on Buffer Sizing. ACM, Palo Alto CA USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jerzy Splawa-Neyman, Dorota M Dabrowska, and TP Speed. 1990. On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Statist. Sci. (1990), 465--472.Google ScholarGoogle Scholar
  76. Diane Tang, Ashish Agarwal, Deirdre O'Brien, and Mike Meyer. 2010. Overlapping Experiment Infrastructure: More, Better, Faster Experimentation. In KDD'10. 10.Google ScholarGoogle Scholar
  77. Eric J. Tchetgen Tchetgen and Tyler J. VanderWeele. 2012. On causal inference in the presence of interference. Statistical Methods in Medical Research 21 (2012), 55 -- 75.Google ScholarGoogle ScholarCross RefCross Ref
  78. Martin Tingley. 2018. Streaming Video Experimentation at Netflix: Visualizing Practical and Statistical Significance. (Sept. 2018). https://netflixtechblog.com/streaming-video-experimentation-at-netflix-visualizing-practical-and-statistical-significance-7117420f4e9aGoogle ScholarGoogle Scholar
  79. Linus Torvalds. [n. d.]. Tcp_input.c - Linux (v5.11-Rc5). ([n. d.]). https://github.com/torvalds/linux/blob/2ab38c17aac10bf55ab3efde4c4db3893d8691d2/net/ipv4/tcp_input.c#L873Google ScholarGoogle Scholar
  80. Donald F Towsley. 2015. TCP, Congestion Control. (Nov. 2015). http://gaia.cs.umass.edu/cs653/slides/tcp.pdfGoogle ScholarGoogle Scholar
  81. Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. 2019. Fifty Shades of Congestion Control: A Performance and Interactions Evaluation. arXiv:1903.03852 [cs] (March 2019). arXiv:cs/1903.03852 http://arxiv.org/abs/1903.03852Google ScholarGoogle Scholar
  82. Belma Turkovic, Fernando A. Kuipers, and Steve Uhlig. 2019. Interactions between Congestion Control Algorithms. In 2019 Network Traffic Measurement and Analysis Conference (TMA). 161--168. Google ScholarGoogle ScholarCross RefCross Ref
  83. Johan Ugander, Brian Karrer, Lars Backstrom, and Jon Kleinberg. 2013. Graph Cluster Randomization: Network Exposure to Multiple Universes. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '13). Association for Computing Machinery, New York, NY, USA, 329--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019. Beyond Jain's Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms. In Proceedings of the 18th ACM Workshop on Hot Topics in Networks. ACM, Princeton NJ USA, 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. 2019. Modeling BBR's Interactions with Loss-Based Congestion Control. In Proceedings of the Internet Measurement Conference. ACM, Amsterdam Netherlands, 137--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. David X. Wei, Pei Cao, and Steven H. Low. 2006. TCP Pacing Revisited. (2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.92.2658&rep=rep1&type=pdfGoogle ScholarGoogle Scholar
  87. Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Levis, and Keith Winstein. 2020. Learning in Situ: A Randomized Experiment in Video Streaming. In NSDI. Santa Clara, CA, USA, 16. https://www.usenix.org/system/files/nsdi20-paper-yan.pdfGoogle ScholarGoogle Scholar

Index Terms

  1. Unbiased experiments in congested networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          IMC '21: Proceedings of the 21st ACM Internet Measurement Conference
          November 2021
          768 pages
          ISBN:9781450391290
          DOI:10.1145/3487552

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 2 November 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate277of1,083submissions,26%

          Upcoming Conference

          IMC '24
          ACM Internet Measurement Conference
          November 4 - 6, 2024
          Madrid , AA , Spain

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader