skip to main content
research-article

3D GIS Semi-automatized Modelling Procedure for the Conservation of the PHiM: Heritage Municipal Buildings of Seville (Spain). A New Dimension for Urban Cultural Data Management

Authors Info & Claims
Published:22 January 2022Publication History
Skip Abstract Section

Abstract

This research explores the possibilities resulting from the use of three-dimensional (3D) models designed in GIS environments for their application to the management and conservation of historical architectonic heritage. This 3D modelling work is one of the strategic actions of the recently finished Master Plan for Conservation of Heritage Municipal Buildings (PD-PHiM) for the City of Seville (Spain). This plan deals with the analysis of a group of 115 municipally owned buildings of high heritage interest that include different typologies, chronologies scales, and uses. This investigation has complemented and continued the initial work begun by the Seville Spatial Data Infrastructure (ide.SEVILLA) in the field of 3D mapping of urban environments and its publication as institutional open data.

The implemented improvements started on an initial diagnosis of a preliminary urban model, which reached a level of detail (LOD) of 2, as defined by the CityGML standard, in only 20% of the registered assets in the PD-PHiM database. The proposed methodology has achieved the automation of most of the process of building 3D geo-referenced models to increase the percentage of assets that reach the LOD2 to 75%. The initial information comes from the use of institutional spatial data of different types and sources: Light Detection and Ranging (LiDAR), Spanish Cadastre Office, and so on. Additionally, the generated entities have been linked to a complex, multidisciplinary and multiscale database, designed within the framework of the strategic actions of the PD-PHiM.

The contributions of the proposal, especially in the automation of processes, imply a considerable saving of resources in comparison with other methods in which the modelling is eminently carried out manually. Thus, they are complementary to those that are related to the use of 3D modelling software intended for other purposes, with the consequent incompatibilities and hard interoperability procedures with GIS environments that this implies.

REFERENCES

  1. Agugiaro Giorgio, Remondino Fabio, Girardi Gabrio, Schwerin Jennifer Von, Richards-Rissetto Heather, and Amicis Raffaele De. 2011. QueryArch3D: Querying and visualising 3D models of a Maya archaeological site in a web-based interface. Geoinformatics FCE CTU 6, (2011), 1017. DOI: https://doi.org/10.14311/gi.6.2Google ScholarGoogle ScholarCross RefCross Ref
  2. Almeida A., Gonçalves L., Falcao A., and Ildefonso S.. 2016. 3D-GIS HERITAGE CITY MODEL: Case study of the historical city of Leiria. In 19th Association of Geographic Information Laboratories in Europe (AGILE) Conference on Geographic Information Science. https://www.agile-online.org/conference_paper/cds/agile_2016/shortpapers/113_Paper_in_PDF.pdf.Google ScholarGoogle Scholar
  3. Álvarez M., Raposo J. F., Miranda M., and Bello A. B.. 2018. 3D urban virtual models generation methodology for smart cities. Inf. la Constr 70, 549 (2018). DOI: https://doi.org/10.3989/id.56528Google ScholarGoogle Scholar
  4. American Society of Photogrammetry and Remote Sensing. 2008. [Lidar]LAS Specification, version 1.2, 1–13. Retrieved November 23, 2021 from https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities.Google ScholarGoogle Scholar
  5. Amirebrahimi Sam, Rajabifard Abbas, Mendis Priyan, and Ngo Tuan. 2015. A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building. In Central Europe CEUR Workshop Proceedings. vol. 1323. 7889.Google ScholarGoogle Scholar
  6. Apollonio Fabrizio I., Gaiani Marco, and Baldissini Simone. 2010. Architectural 3D modeling for a 3D GIS web-based system. In the 11th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST. 8386. https://doi.org/10.2312/PE/VAST/VAST10S/083-086Google ScholarGoogle Scholar
  7. Biljecki Filip, Stoter Jantien, Ledoux Hugo, Zlatanova Sisi, and Çöltekin Arzu. 2015. Applications of 3D city models: State of the art review. ISPRS Int. J. Geo-Information 4, 4 (2015), 28422889. DOI: https://doi.org/10.3390/ijgi4042842Google ScholarGoogle ScholarCross RefCross Ref
  8. Centofanti M., Continenza R., Brusaporci S., and Trizio I.. 2012. The architectural information system SIARCH3D-UNIVAQ for analysis and preservation of architectural heritage. In ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 914. DOI: https://doi.org/10.5194/isprsarchives-xxxviii-5-w16-9-2011Google ScholarGoogle ScholarCross RefCross Ref
  9. Chevrier Christine. 2015. Semiautomatic parametric modelling of the buildings on town scale models. J. Comput. Cult. Herit 7, 4 (2015), 120. DOI: https://doi.org/10.1145/2622609Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Colucci E., Noardo F., Matrone F., Spanò A., and Lingua A.. 2018. High-level-of-detail semantic 3D GIS for risk and damage representation of architectural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch 42, 4 (2018), 177183. DOI: https://doi.org/10.5194/isprs-archives-XLII-4-107-2018Google ScholarGoogle Scholar
  11. Dell'Unto Nicoló, Landeschi Giacomo, Leander Touati Anne Marie, Dellepiane Matteo, Callieri Marco, and Ferdani Daniele. 2016. Experiencing ancient buildings from a 3D GIS perspective: A case drawn from the Swedish Oompeii project. J. Archaeol. Method Theory 23, 1 (2016), 7394. DOI: https://doi.org/10.1007/s10816-014-9226-7Google ScholarGoogle ScholarCross RefCross Ref
  12. Dore C. and Murphy M.. 2012. Integration of historic building information modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In Proceedings of the 18th International Conference on Virtual Systems and Multimedia (VSMM’12): Virtual Systems in the Information Society. Milan, Italy, 369376. DOI: https://doi.org/10.1109/VSMM.2012.6365947Google ScholarGoogle ScholarCross RefCross Ref
  13. Forte Maurizio. 2014. Virtual reality, cyberarchaeology, teleimmersive archaeology. In 3D Recording and Modelling in Archaeology and Cultural Heritage.Theory and Best Practices, Remondino F. and Campana S. (eds.). Archaeopress BAR, 113127.Google ScholarGoogle Scholar
  14. García Rodríguez Saioa. 2019. Propuesta metodológica de evaluación de clasificaciones LiDAR: Estudio de caso sobre datos del plan de ortofotografía Aérea (PNOA). (2019). Retrieved May 13, 2021 from https://hdl.handle.net/2454/35094.Google ScholarGoogle Scholar
  15. Gröger Gerhard and Plümer Lutz. 2012. CityGML—interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens 71 (2012), 1233. DOI: https://doi.org/10.1016/j.isprsjprs.2012.04.004Google ScholarGoogle ScholarCross RefCross Ref
  16. Haala Norbert and Kada Martin. 2010. An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens 65, 6 (2010), 570580. DOI: https://doi.org/10.1016/j.isprsjprs.2010.09.006Google ScholarGoogle ScholarCross RefCross Ref
  17. Sánchez Francisco Manuel Hidalgo. 2018. Interoperabilidad entre SIG y BIM aplicada al patrimonio arquitectónico. Exploración de Posibilidades Mediante la Realización de un Modelo Digitalizado de la Antigua Iglesia de Santa Lucía y Posterior Análisis. Universidad de Sevilla, Spain. Retrieved November 23, 2021 from https://idus.us.es/xmlui/handle/11441/79394.Google ScholarGoogle Scholar
  18. Jovanović Dušan, Milovanov Stevan, Ruskovski Igor, Govedarica Miro, Sladić Dubravka, Radulović Aleksandra, and Pajić Vladimir. 2020. Building virtual 3D city model for smart cities applications: A case study on campus area of the University of Novi Sad. ISPRS Int. J. Geo-Information 9, 476 (2020), 124. DOI: https://doi.org/10.3390/ijgi9080476Google ScholarGoogle Scholar
  19. Kada Martin. 2019. 3D-Gebäudemodellierung und -generalisierung. In Geoinformatik. Springer Reference Naturwissenschaften. Springer Spektrum, Berlin, 123156. DOI: https://doi.org/10.1007/978-3-662-47096-1_67Google ScholarGoogle Scholar
  20. Larsson Anton. 2017. Utvärdering av metod för att skapa 3D-byggnader i LOD2 with volume calculation. Karlstads University.Google ScholarGoogle Scholar
  21. Lee Ming-Chun. 2018. Case study on emerging trends in geospatial technologies for study of urban form. In Proceedings 24th International Seminar on Urban Form (ISUF’17). City and Territory in the Globalization Age. https://doi.org/10.4995/ISUF2017.2017.5974Google ScholarGoogle Scholar
  22. Lezzerini Marco, Antonelli Fabrizio, Columbu Stefano, Gadducci Renzo, Marradi Alessandro, Miriello Domenico, Parodi Luca, Secchiari Lorenzo, and Lazzeri Andrea. 2016. Cultural heritage documentation and conservation: Three-dimensional (3D) laser scanning and geographical information system (GIS) techniques for thematic mapping of facade stonework of St. Nicholas Church (Pisa, Italy). Int. J. Archit. Herit 10, 1 (2016), 919. DOI: https://doi.org/10.1080/15583058.2014.924605Google ScholarGoogle ScholarCross RefCross Ref
  23. Mascort-Albea Emilio J., Jaramillo-Morilla Antonio, Romero-Hernández Rocío, and Hidalgo-Sánchez Francisco M.. 2019. BIM-GIS interoperability applied to architectonic heritage: 2D and 3D digital models for the study of the ancient church of Santa Lucía in Seville (Spain). In Science and Digital Technology for Cultural Heritage Interdisciplinary Approach to Diagnosis, Vulnerability, Risk Assessment and Graphic Information Models. CRC Press—Taylor & Francis Group, London, 3135.Google ScholarGoogle Scholar
  24. Mascort-Albea Emilio J., Ruiz-Jaramillo Jonathan, Larrínaga Francisco López, and Bernal Apolinar de la Peña. 2016. Sevilla, patrimonio mundial: Guía cultural interactiva para dispositivos móviles. Rev. PH 90 (2016), 152168. DOI: https://doi.org/10.33349/2016.0.3778Google ScholarGoogle Scholar
  25. Matrone F., Colucci E., De Ruvo V., Lingua A., and Spanò A.. 2019. HBIM in a semantic 3D GIS database. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 2/W11 (2019), 857865. DOI: https://doi.org/10.5194/isprs-Archives-XLII-2-W11-857-2019Google ScholarGoogle ScholarCross RefCross Ref
  26. Mauro A.. 2019. From the extraordinary nature of the Great Pompeii Project to planned conservation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 42, 2/W11 (2019), 867871. DOI: https://doi.org/10.5194/isprs-Archives-XLII-2-W11-867-2019Google ScholarGoogle ScholarCross RefCross Ref
  27. Tobiáš Pavel and Cajthaml Jiri. 2020. Models of cultural heritage buildings in a procedurally generated geospatial environment. Trans. GIS (2020). DOI: https://doi.org/10.1111/tgis.12727Google ScholarGoogle Scholar
  28. Prieto Iñaki, Izkara Jose Luis, and Bejar Ruben. 2014. A workflow for the semi-automatic generation of low cost 3D city models. In LowCost3D—Sensors, Algorithms, Applications.Google ScholarGoogle Scholar
  29. Remondino Fabio, El-Hakim Sabry, Girardi Stefano, Rizzi A., Benedetti S., and Gonzo Lorenzo. 2009. 3D Virtual reconstruction and visualization of complex architectures. The 3D-ARCH project. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Lemmer. DOI: https://doi.org/10.3929/ethz-b-000019630Google ScholarGoogle Scholar
  30. Remondino Fabio and Agugiaro Giorgio. 2014. 3D GIS for cultural heritage sites: The QueryArch3D Prototype. In 3D Recording and Modelling in Archaeology and Cultural Heritage.Theory and Best Practices, Remondino Fabio and Campana Stefano (eds.). Archaeopress BAR, 145150.Google ScholarGoogle Scholar
  31. Vosselman George and Maas H. G.. 2010. Airborne and Terrestrial Laser Scanning. Boca Raton : CRC Press.Google ScholarGoogle Scholar
  32. Wichmann Andreas, Agoub Amgad, Schmidt Valentina, and Kada Martin. 2019. RoofN3D: A database for 3D building reconstruction with deep learning. Photogramm. Eng. Remote Sens 85, 6 (2019), 435443. DOI: https://doi.org/10.14358/PERS.85.6.435Google ScholarGoogle ScholarCross RefCross Ref
  33. Yin Xuetao, Wonka Peter, and Razdan Anshuman. 2009. Generating 3D building models from architectural drawings: A survey. IEEE Comput. Graph. Appl 29, 1 (2009), 2030. DOI: https://doi.org/10.1109/MCG.2009.9Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 3D GIS Semi-automatized Modelling Procedure for the Conservation of the PHiM: Heritage Municipal Buildings of Seville (Spain). A New Dimension for Urban Cultural Data Management

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Journal on Computing and Cultural Heritage
          Journal on Computing and Cultural Heritage   Volume 15, Issue 1
          February 2022
          348 pages
          ISSN:1556-4673
          EISSN:1556-4711
          DOI:10.1145/3505194
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 22 January 2022
          • Revised: 1 May 2021
          • Accepted: 1 May 2021
          • Received: 1 January 2021
          Published in jocch Volume 15, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text

        HTML Format

        View this article in HTML Format .

        View HTML Format