skip to main content
10.1145/3461702.3462575acmconferencesArticle/Chapter ViewAbstractPublication PagesaiesConference Proceedingsconference-collections
research-article
Open Access

Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds

Authors Info & Claims
Published:30 July 2021Publication History

ABSTRACT

Prior work on fairness in machine learning has focused on settings where all the information needed about each individual is readily available. However, in many applications, further information may be acquired at a cost. For example, when assessing a customer's creditworthiness, a bank initially has access to a limited set of information but progressively improves the assessment by acquiring additional information before making a final decision. In such settings, we posit that a fair decision maker may want to ensure that decisions for all individuals are made with similar expected error rate, even if the features acquired for the individuals are different. We show that a set of carefully chosen confidence thresholds can not only effectively redistribute an information budget according to each individual's needs, but also serve to address individual and group fairness concerns simultaneously. Finally, using two public datasets, we confirm the effectiveness of our methods and investigate the limitations.

Skip Supplemental Material Section

Supplemental Material

References

  1. aono2017privacyAono, Y.; Hayashi, T.; Wang, L.; Moriai, S.; et al. 2017. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Transactions on Information Forensics and Security 13(5): 1333--1345.Google ScholarGoogle Scholar
  2. Gummadi, Varshney, Weller, and Pentland]bakker2019dadiBakker, M. A.; Tu, D. P.; Valdés, H. R.; Gummadi, K. P.; Varshney, K. R.; Weller, A.; and Pentland, A. 2019. DADI: Dynamic Discovery of Fair Information with Adversarial Reinforcement Learning. arXiv preprint arXiv:1910.13983 .Google ScholarGoogle Scholar
  3. bechavod2017penalizingBechavod, Y.; and Ligett, K. 2017. Penalizing unfairness in binary classification. arXiv preprint arXiv:1707.00044 .Google ScholarGoogle Scholar
  4. berk2018fairnessBerk, R.; Heidari, H.; Jabbari, S.; Kearns, M.; and Roth, A. 2018. Fairness in criminal justice risk assessments: The state of the art. Sociological Methods & Research 0049124118782533.Google ScholarGoogle Scholar
  5. cai2020fairCai, W.; Gaebler, J.; Garg, N.; and Goel, S. 2020. Fair Allocation through Selective Information Acquisition. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 22--28.Google ScholarGoogle Scholar
  6. calmon2017optimizedCalmon, F.; Wei, D.; Vinzamuri, B.; Ramamurthy, K. N.; and Varshney, K. R. 2017. Optimized pre-processing for discrimination prevention. In Advances in Neural Information Processing Systems, 3992--4001.Google ScholarGoogle Scholar
  7. chen2018myChen, I.; Johansson, F. D.; and Sontag, D. 2018. Why Is My Classifier Discriminatory? In Advances in Neural Information Processing Systems, 3539.Google ScholarGoogle Scholar
  8. chouldechova2018caseChouldechova, A.; Benavides-Prado, D.; Fialko, O.; and Vaithianathan, R. 2018. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. In Conference on Fairness, Accountability and Transparency, 134--148.Google ScholarGoogle Scholar
  9. chouldechova2018frontiersChouldechova, A.; and Roth, A. 2018. The frontiers of fairness in machine learning. arXiv preprint arXiv:1810.08810 .Google ScholarGoogle Scholar
  10. corbett2017algorithmicCorbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and Huq, A. 2017. Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 797--806. ACM.Google ScholarGoogle Scholar
  11. davis2016privacyDavis, J.; and Osoba, O. 2016. Privacy Preservation in the Age of Big Data. Available at SSRN 2944731 .Google ScholarGoogle Scholar
  12. dwork2012fairnessDwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, 214--226. ACM.Google ScholarGoogle Scholar
  13. eubanks2018automatingEubanks, V. 2018. Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin's Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. feldman2015certifyingFeldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.; and Venkatasubramanian, S. 2015. Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, 259--268.Google ScholarGoogle Scholar
  15. gao2011activeGao, T.; and Koller, D. 2011. Active classification based on value of classifier. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  16. ez-Lobato]gong2019icebreakerGong, W.; Tschiatschek, S.; Turner, R.; Nowozin, S.; and Hernández-Lobato, J. M. 2019. Icebreaker: Element-wise Active Information Acquisition with Bayesian Deep Latent Gaussian Model. arXiv preprint arXiv:1908.04537 .Google ScholarGoogle Scholar
  17. hardt2016equalityHardt, M.; Price, E.; Srebro, N.; et al. 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems, 3315.Google ScholarGoogle Scholar
  18. rt-Johnson et al.(2018)Hébert-Johnson, Kim, Reingold, and Rothblum]hebert2018multicalibrationHébert-Johnson, Ú. ; Kim, M.; Reingold, O.; and Rothblum, G. 2018. Multicalibration: Calibration for the (computationally-identifiable) masses. In International Conference on Machine Learning, 1944--1953.Google ScholarGoogle Scholar
  19. sep-evidence-legalHo, H. L. 2015. The Legal Concept of Evidence. In Zalta, E. N., ed., The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2015 edition.Google ScholarGoogle Scholar
  20. joseph2016fairnessJoseph, M.; Kearns, M.; Morgenstern, J. H.; and Roth, A. 2016. Fairness in learning: Classic and contextual bandits. In Advances in Neural Information Processing Systems, 325--333.Google ScholarGoogle Scholar
  21. kanani2008predictionKanani, P.; and Melville, P. 2008. Prediction-time active feature-value acquisition for cost-effective customer targeting. Advances In Neural Information Processing Systems (NIPS) .Google ScholarGoogle Scholar
  22. kaplan1968decisionKaplan, J. 1968. Decision Theory and the Factfinding Process. Stanford Law Review 1065--1092.Google ScholarGoogle Scholar
  23. kearns2017preventingKearns, M.; Neel, S.; Roth, A.; and Wu, Z. S. 2017. Preventing fairness gerrymandering: Auditing and learning for subgroup fairness. arXiv .Google ScholarGoogle Scholar
  24. krishnapuram2011costKrishnapuram, B.; Yu, S.; and Rao, R. B. 2011. Cost-sensitive Machine Learning. CRC Press.Google ScholarGoogle Scholar
  25. lewenberg2017knowingLewenberg, Y.; Bachrach, Y.; Paquet, U.; and Rosenschein, J. S. 2017. Knowing what to ask: A Bayesian active learning approach to the surveying problem. In Thirty-First AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  26. lichman2013uciLichman, M.; et al. 2013. UCI machine learning repository.Google ScholarGoogle Scholar
  27. liu2008tefeLiu, L.-P.; Yu, Y.; Jiang, Y.; and Zhou, Z.-H. 2008. TEFE: A time-efficient approach to feature extraction. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. IEEE.Google ScholarGoogle Scholar
  28. ma2018eddiMa, C.; Tschiatschek, S.; Palla, K.; Hernandez-Lobato, J. M.; Nowozin, S.; and Zhang, C. 2019. EDDI: Efficient Dynamic Discovery of High-Value Information with Partial VAE. In International Conference on Machine Learning, 4234--4243.Google ScholarGoogle Scholar
  29. noriega2018activeNoriega-Campero, A.; Bakker, M.; Garcia-Bulle, B.; and Pentland, A. 2019. Active Fairness in Algorithmic Decision Making. Proceedings of AAAI / ACM Conference on Artificial Intelligence, Ethics, and Society .Google ScholarGoogle Scholar
  30. noriega2020algorithmicNoriega-Campero, A.; Garcia-Bulle, B.; Cantu, L. F.; Bakker, M. A.; Tejerina, L.; and Pentland, A. 2020. Algorithmic targeting of social policies: fairness, accuracy, and distributed governance. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 241--251.Google ScholarGoogle Scholar
  31. platt1999probabilisticPlatt, J. C. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers 10(3): 61--74.Google ScholarGoogle Scholar
  32. pleiss2017fairnessPleiss, G.; Raghavan, M.; Wu, F.; Kleinberg, J.; and Weinberger, K. Q. 2017. On fairness and calibration. In Advances in Neural Information Processing Systems, 5680--5689.Google ScholarGoogle Scholar
  33. saar2007handlingSaar-Tsechansky, M.; and Provost, F. 2007. Handling missing values when applying classification models. Journal of machine learning research 8(Jul): 1623--1657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. kearns2019averageSharifi-Malvajerdi, S.; Kearns, M.; and Roth, A. 2019. Average Individual Fairness: Algorithms, Generalization and Experiments. In Advances in Neural Information Processing Systems, 8242--8251.Google ScholarGoogle Scholar
  35. shim2018jointShim, H.; Hwang, S. J.; and Yang, E. 2018. Joint active feature acquisition and classification with variable-size set encoding. In Advances in Neural Information Processing Systems, 1368--1378.Google ScholarGoogle Scholar
  36. speicher2018unifiedSpeicher, T.; Heidari, H.; Grgic-Hlaca, N.; Gummadi, K. P.; Singla, A.; Weller, A.; and Zafar, M. B. 2018. A unified approach to quantifying algorithmic unfairness: Measuring individual &group unfairness via inequality indices. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2239--2248.Google ScholarGoogle Scholar
  37. verma2018fairnessVerma, S.; and Rubin, J. 2018. Fairness definitions explained. In 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), 1--7. IEEE.Google ScholarGoogle Scholar
  38. zafar2017fairnessZafar, M. B.; Valera, I.; Rogriguez, M. G.; and Gummadi, K. P. 2017. Fairness Constraints: Mechanisms for Fair Classification. In Artificial Intelligence and Statistics, 962--970.Google ScholarGoogle Scholar
  39. zhao2019secureZhao, C.; Zhao, S.; Zhao, M.; Chen, Z.; Gao, C.-Z.; Li, H.; and Tan, Y.-a. 2019. Secure multi-party computation: theory, practice and applications. Information Sciences 476: 357--372.Google ScholarGoogle ScholarCross RefCross Ref
  40. zhao2020individualZhao, S.; Ma, T.; and Ermon, S. 2020. Individual calibration with randomized forecasting. In International Conference on Machine Learning, 11387--11397. PMLR.Google ScholarGoogle Scholar

Index Terms

  1. Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          AIES '21: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society
          July 2021
          1077 pages
          ISBN:9781450384735
          DOI:10.1145/3461702

          Copyright © 2021 Owner/Author

          This work is licensed under a Creative Commons Attribution International 4.0 License.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 30 July 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate61of162submissions,38%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader