skip to main content
research-article

An inverse method for the exploration of layered material appearance

Published:19 July 2021Publication History
Skip Abstract Section

Abstract

Layered materials exhibit a wide range of appearance, due to the combined effects of absorption and scattering at and between interfaces. Yet most existing approaches let users set the physical parameters of all layers by hand, a process of trial and error. We introduce an inverse method that provides control over BRDF lobe properties of layered materials, while automatically retrieving compatible physical parameters. Our method permits to explore the space of layered material appearance: it lets users find configurations with nearly indistinguishable appearance, isolate grazing angle effects, and give control over properties such as the color, blur or haze of reflections.

Skip Supplemental Material Section

Supplemental Material

a176-bati.mp4

mp4

30.6 MB

3450626.3459857.mp4

Presentation.

mp4

51 MB

References

  1. F. Abelès. 1948. Sur la propagation des ondes électromagnétiques dans les milieux sratifiés. Ann. Phys. 12, 3 (1948), 504--520.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. F. Armaly, J. G. Ochoa, and D. C. Look. 1972. Restrictions on the Inversion of the Fresnel Reflectance Equations. Appl. Opt. 11, 12 (1972), 2907--2910.Google ScholarGoogle ScholarCross RefCross Ref
  3. P. Barla, R. Pacanowski, and P. Vangorp. 2018. A Composite BRDF Model for Hazy Gloss. Computer Graphics Forum 37, 4 (2018), 55--66.Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Bati, R. Pacanowski, and P. Barla. 2019. Numerical Analysis of Layered Materials Models. Research Report.Google ScholarGoogle Scholar
  5. P. Beckmann and A. Spizzichino. 1963. The scattering of electromagnetic waves from rough surfaces. Pergamon Press; [distributed in the Western Hemisphere by Macmillan, New York] goford, New York. viii, 503 p. pages.Google ScholarGoogle Scholar
  6. L. Belcour. 2018. Efficient Rendering of Layered Materials Using an Atomic Decomposition with Statistical Operators. ACM Trans. Graph. 37, 4, Article 73 (2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Colbert, S. Pattanaik, and J. Krivanek. 2006. BRDF-Shop: creating physically correct bidirectional reflectance distribution functions. IEEE Computer Graphics and Applications 26, 1 (2006), 30--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Q. Dai, J. Wang, Y. Liu, J. Snyder, E. Wu, and B. Guo. 2009. The Dual-microfacet Model for Capturing Thin Transparent Slabs. Computer Graphics Forum 28, 7 (2009), 1917--1925.Google ScholarGoogle ScholarCross RefCross Ref
  9. V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep Network. ACM Trans. Graph. 37, 4, Article 128 (2018), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Ergun, S. Önel, and A. Ozturk. 2016. A General Micro-flake Model for Predicting the Appearance of Car Paint. In Proc. of the Eurographics Symposium on Rendering: Experimental Ideas & Implementations (EGSR '16). Eurographics Association, 65--71.Google ScholarGoogle Scholar
  11. S. Ershov, R. Durikovic, K. Kolchin, and K. Myszkowski. 2004. Reverse engineering approach to appearance-based design of metallic and pearlescent paints. The Visual Computer 20 (2004), 586--600.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Ershov, K. Kolchin, and K. Myszkowski. 2001. Rendering Pearlescent Appearance Based On Paint-Composition Modelling. Computer Graphics Forum 20, 3 (2001), 227--238.Google ScholarGoogle ScholarCross RefCross Ref
  13. L. E. Gamboa, A. Gruson, and D. Nowrouzezahrai. 2020. An Efficient Transport Estimator for Complex Layered Materials. Computer Graphics Forum 39, 2 (2020), 363--371.Google ScholarGoogle ScholarCross RefCross Ref
  14. I. Georgiev, J. Portsmouth, Z. Andersson, A. Herubel, A. King, S. Ogaki, and F. Servant. 2019. A Surface Standard. https://autodesk.github.io/standard-surface/.Google ScholarGoogle Scholar
  15. J. Gu, R. Ramamoorthi, P. Belhumeur, and S. Nayar. 2007. Dirty Glass: Rendering Contamination on Transparent Surfaces. In Eurographics Symposium on Rendering (EGSR'07). Eurographics Association, 159--170.Google ScholarGoogle Scholar
  16. O. Gulbrandsen. 2014. Artist Friendly Metallic Fresnel. Journal of Computer Graphics Techniques (JCGT) 3, 4 (2014), 64--72.Google ScholarGoogle Scholar
  17. J. Guo, J. Qian, Y. Guo, and J. Pan. 2017. Rendering Thin Transparent Layers with Extended Normal Distribution Functions. IEEE Transactions on Visualization & Computer Graphics 23, 9 (2017), 2108--2119.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Y. Guo, M. Hašan, and S. Zhao. 2018. Position-Free Monte Carlo Simulation for Arbitrary Layered BSDFs. ACM Trans. Graph. 37, 6, Article 279 (2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. H. Hirayama, K. Kaneda, H. Yamashita, and Y. Monden. 2001. An accurate illumination model for objects coated with multilayer films. Computers & Graphics 25, 3 (2001), 391--400.Google ScholarGoogle ScholarCross RefCross Ref
  20. I. Icart and D. Arquès. 2000. A Physically-Based BRDF Model for Multilayer Systems with Uncorrelated Rough Boundaries. In Proc. of the Eurographics Workshop on Rendering Techniques 2000. Springer-Verlag, 353--364.Google ScholarGoogle Scholar
  21. W. Jakob, E. d'Eon, O. Jakob, and S. Marschner. 2014. A Comprehensive Framework for Rendering Layered Materials. ACM Trans. Graph. 33, 4, Article 118 (2014), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. W. Matusik, H. Pfister, M. Brand, and L. McMillan. 2003. A Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (2003), 759--769.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. A. Ngan, F. Durand, and W. Matusik. 2006. Image-Driven Navigation of Analytical BRDF Models. In Symposium on Rendering (Nicosia, Cyprus) (EGSR '06). Eurographics Association, 399--407.Google ScholarGoogle Scholar
  24. G. Patow and X. Pueyo. 2003. A Survey of Inverse Rendering Problems. Computer Graphics Forum 22, 4 (2003), 663--687.Google ScholarGoogle ScholarCross RefCross Ref
  25. F. Pellacini, J. A. Ferwerda, and D. P. Greenberg. 2000. Toward a Psychophysically-Based Light Reflection Model for Image Synthesis. In Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., 55--64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. R. Querry. 1969. Direct Solution of the Generalized Fresnel Reflectance Equations. J. Opt. Soc. Am. 59, 7 (1969), 876--877.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Riviere, I. Reshetouski, L. Filipi, and A. Ghosh. 2017. Polarization Imaging Reflectometry in the Wild. ACM Trans. Graph. 36, 6, Article 206 (2017), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Serrano, D. Gutierrez, K. Myszkowski, H. P. Seidel, and B. Masia. 2016. An intuitive control space for material appearance. ACM Trans. Graph. 35, 6, Article 186 (2016), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. L. Simonot, M. Hébert, and R. D. Hersch. 2006. Extension of the Williams-Clapper model to stacked nondiffusing colored coatings with different refractive indices. J. Opt. Soc. Am. A 23, 6 (2006), 1432--1441.Google ScholarGoogle ScholarCross RefCross Ref
  30. G. G. Stokes. 1862. IV. On the intensity of the light reflected from or transmitted through a pile of plates. Proc. of the Royal Society of London 11 (1862), 545--556.Google ScholarGoogle ScholarCross RefCross Ref
  31. B. Walter, S. Marschner, H. Li, and K. Torrance. 2007. Microfacet Models for Refraction Through Rough Surfaces. In Eurographics Symposium on Rendering (EGSR'07). Eurographics Association, 195--206.Google ScholarGoogle Scholar
  32. G. J. Ward. 1992. Measuring and Modeling Anisotropic Reflection. SIGGRAPH Comput. Graph. 26, 2 (1992), 265--272.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Weidlich and A. Wilkie. 2007. Arbitrarily Layered Micro-facet Surfaces. In Proc. of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (GRAPHITE '07). ACM, 171--178.Google ScholarGoogle Scholar
  34. H. Wu, J. Dorsey, and H. Rushmeier. 2013. Inverse bi-scale material design. ACM Trans. Graph. 32, 6, Article 163 (2013), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. M. Xia, B. Walter, C. Hery, and S. Marschner. 2020. Gaussian Product Sampling for Rendering Layered Materials. Computer Graphics Forum 39, 1 (2020), 420--435.Google ScholarGoogle ScholarCross RefCross Ref
  36. P. Yeh. 2005. Optical Waves in Layered Media. Number v. 2 in Wiley Series in Pure and Applied Optics. Wiley.Google ScholarGoogle Scholar
  37. T. Zeltner and W. Jakob. 2018. The Layer Laboratory: A Calculus for Additive and Subtractive Composition of Anisotropic Surface Reflectance. ACM Trans. Graph. 37, 4, Article 74 (2018), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. S. Zhao, R. Ramamoorthi, and K. Bala. 2014. High-order similarity relations in radiative transfer. ACM Trans. Graph. 33, 4 (2014), 104:1--104:12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. K. Zsolnai-Fehér, P. Wonka, and M. Wimmer. 2020. Photorealistic Material Editing Through Direct Image Manipulation. Computer Graphics Forum 39, 4 (2020), 107--120.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. An inverse method for the exploration of layered material appearance

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 40, Issue 4
      August 2021
      2170 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3450626
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 July 2021
      Published in tog Volume 40, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader