skip to main content
10.1145/3448016.3457328acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Medical Entity Disambiguation Using Graph Neural Networks

Published:18 June 2021Publication History

ABSTRACT

Medical knowledge bases (KBs), distilled from biomedical literature and regulatory actions, are expected to provide high-quality information to facilitate clinical decision making. Entity disambiguation (also referred to as entity linking) is considered as an essential task in unlocking the wealth of such medical KBs. However, existing medical entity disambiguation methods are not adequate due to word discrepancies between the entities in the KB and the text snippets in the source documents. Recently, graph neural networks (GNNs) have proven to be very effective and provide state-of-the-art results for many real-world applications with graph-structured data. In this paper, we introduce ED-GNN based on three representative GNNs (GraphSAGE, R-GCN, and MAGNN) for medical entity disambiguation. We develop two optimization techniques to fine-tune and improve ED-GNN. First, we introduce a novel strategy to represent entities that are mentioned in text snippets as a query graph. Second, we design an effective negative sampling strategy that identifies hard negative samples to improve the model's disambiguation capability. Compared to the best performing state-of-the-art solutions, our ED-GNN offers an average improvement of 7.3% in terms of F1 score on five real-world datasets.

Skip Supplemental Material Section

Supplemental Material

3448016.3457328.mp4

mp4

39.9 MB

References

  1. H. Bunke. What is the distance between graphs. Bulletin of the EATCS, 20:35--39, 1983.Google ScholarGoogle Scholar
  2. H. Bunke and K. Shearer. A graph distance metric based on the maximal common subgraph. Pattern Recogn. Lett., 19(3--4):255--259, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Y. Cao, L. Hou, J. Li, and Z. Liu. Neural collective entity linking. In COLING, pages 675--686, 2018.Google ScholarGoogle Scholar
  4. Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Representation learning for attributed multiplex heterogeneous network. In SIGKDD, page 1358--1368, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Chisholm and B. Hachey. Entity disambiguation with web links. TACL, 3:145--156, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolution, and Duplicate Detection. Data-Centric Systems and Applications. Springer, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and B. C. Ooi. Fine-grained concept linking using neural networks in healthcare. In SIGMOD, pages 51--66, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Das, J. Srinivasan, M. Perry, E. I. Chong, and J. Banerjee. A tale of two graphs: Property graphs as RDF in oracle. In EDBT, pages 762--773, 2014.Google ScholarGoogle Scholar
  9. R. I. Dogan, R. Leaman, and Z. Lu. Ncbi disease corpus: A resource for disease name recognition and concept normalization. Journal of Biomedical Informatics, 47:1 -- 10, 2014.Google ScholarGoogle Scholar
  10. M. Dredze, P. McNamee, D. Rao, A. Gerber, and T. Finin. Entity disambiguation for knowledge base population. In COLING, page 277--285, 2010.Google ScholarGoogle Scholar
  11. X. Fu, J. Zhang, Z. Meng, and I. King. Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In WWW, page 2331--2341, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Gardner, J. Grus, et al. AllenNLP: A deep semantic natural language processing platform. CoRR, abs/1803.07640, 2018.Google ScholarGoogle Scholar
  13. T. G"a rtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In COLT, volume 2777, pages 129--143, 2003.Google ScholarGoogle Scholar
  14. Y. Govind, P. Konda, P. S. G. C., P. Martinkus, P. Nagarajan, H. Li, A. Soundararajan, S. Mudgal, J. R. Ballard, H. Zhang, A. Ardalan, S. Das, D. Paulsen, A. S. Saini, E. Paulson, Y. Park, M. Carter, M. Sun, G. M. Fung, and A. Doan. Entity matching meets data science: A progress report from the magellan project. In SIGMOD, pages 389--403, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In NIPS, pages 1024--1034, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. W. Hua, K. Zheng, and X. Zhou. Microblog entity linking with social temporal context. In SIGMOD, pages 1761--1775, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. E. Johnson, T. J. Pollard, L. Shen, et al. Mimic-iii, a freely accessible critical care database. Scientific data, 3:160035, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.Google ScholarGoogle Scholar
  19. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.Google ScholarGoogle Scholar
  20. H. Kö pcke and E. Rahm. Frameworks for entity matching: A comparison. Data Knowl. Eng., 69(2):197--210, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. I. Korkontzelos, D. Piliouras, A. W. Dowsey, and S. Ananiadou. Boosting drug named entity recognition using an aggregate classifier. Artif. Intell. Medicine, 65(2):145--153, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural architectures for named entity recognition. In NAACL, pages 260--270, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinform., 36(4):1234--1240, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Li, Y. Sun, R. J. Johnson, D. Sciaky, C.-H. Wei, R. Leaman, A. P. Davis, C. J. Mattingly, T. C. Wiegers, and Z. Lu. BioCreative V CDR task corpus: a resource for chemical disease relation extraction. Database, 2016, 05 2016.Google ScholarGoogle Scholar
  25. Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks for learning the similarity of graph structured objects. In ICML, pages 3835--3845, 2019.Google ScholarGoogle Scholar
  26. Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated graph sequence neural networks. In ICLR, 2016.Google ScholarGoogle Scholar
  27. C. D. Manning, M. Surdeanu, J. Bauer, et al. The Stanford CoreNLP natural language processing toolkit. In ACL, pages 55--60, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  28. T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111--3119, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep learning for entity matching: A design space exploration. In SIGMOD, page 19--34, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung. A novel embedding model for knowledge base completion based on convolutional neural network. In NAACL, pages 327--333, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  31. S. Pradhan, N. Elhadad, W. Chapman, S. Manandhar, and G. Savova. SemEval-2014 task 7: Analysis of clinical text. In Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pages 54--62, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  32. PyTorch. https://pytorch.org/, 2020.Google ScholarGoogle Scholar
  33. R. J. Qureshi, J. Ramel, and H. Cardot. Graph based shapes representation and recognition. In International Workshop on Graph-Based Representations in Pattern Recognition, pages 49--60, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  34. P. Ristoski, J. Rosati, T. D. Noia, R. D. Leone, and H. Paulheim. Rdf2vec: RDF graph embeddings and their applications. Semantic Web, 10(4):721--752, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  35. G. K. Savova, J. J. Masanz, P. V. Ogren, J. Zheng, S. Sohn, K. K. Schuler, and C. G. Chute. Mayo clinical text analysis and knowledge extraction system (ctakes): architecture, component evaluation and applications. J. Am. Medical Informatics Assoc., 17(5):507--513, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling relational data with graph convolutional networks. In ESWC, pages 593--607, 2018.Google ScholarGoogle Scholar
  37. W. Shen, J. Han, J. Wang, X. Yuan, and Z. Yang. SHINEGoogle ScholarGoogle Scholar
  38. : A general framework for domain-specific entity linking with heterogeneous information networks. IEEE Trans. Knowl. Data Eng., 30(2):353--366, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  39. W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, techniques, and solutions. IEEE Trans. Knowl. Data Eng., 27(2):443--460, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  40. D. Tikk and I. Solt. Improving textual medication extraction using combined conditional random fields and rule-based systems. J. Am. Medical Informatics Assoc., 17(5):540--544, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  41. E. Tseytlin, K. J. Mitchell, E. Legowski, J. Corrigan, G. Chavan, and R. S. Jacobson. NOBLE - flexible concept recognition for large-scale biomedical natural language processing. BMC Bioinform., 17:32, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks. In ICLR, 2018.Google ScholarGoogle Scholar
  43. M. Wang, D. Zheng, Z. Ye, et al. Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv:1909.01315, 2019.Google ScholarGoogle Scholar
  44. P. Wang, S. Li, and R. Pan. Incorporating GAN for negative sampling in knowledge representation learning. In AAAI, pages 2005--2012, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  45. Q. Wang, B. Wang, and L. Guo. Knowledge base completion using embeddings and rules. In IJCAI, page 1859--1865, 2015.Google ScholarGoogle Scholar
  46. X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph attention network. In WWW, page 2022--2032, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. D. Wright, Y. Katsis, R. Mehta, and C.-N. Hsu. NormCo: Deep disease normalization for biomedical knowledge base construction. In AKBC 2019, 2019.Google ScholarGoogle Scholar
  48. J. Wu, R. Zhang, Y. Mao, H. Guo, M. Soflaei, and J. Huai. Dynamic graph convolutional networks for entity linking. In WWW, pages 1149--1159, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin. Graph2seq: Graph to sequence learning with attention-based neural networks. CoRR, abs/1804.00823, 2018.Google ScholarGoogle Scholar
  50. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph convolutional neural networks for web-scale recommender systems. In SIGKDD, page 974--983, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph neural networks. In NeurIPS, pages 9240--9251, 2019.Google ScholarGoogle Scholar
  52. C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph neural network. In SIGKDD, page 793--803, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Y. Zhang, Q. Yao, Y. Shao, and L. Chen. Nscaching: Simple and efficient negative sampling for knowledge graph embedding. In ICDE, pages 614--625, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  54. S. Zwicklbauer, C. Seifert, and M. Granitzer. DoSeR - A knowledge-base-agnostic framework for entity disambiguation using semantic embeddings. In ESWC, pages 182--198, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Medical Entity Disambiguation Using Graph Neural Networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGMOD '21: Proceedings of the 2021 International Conference on Management of Data
          June 2021
          2969 pages
          ISBN:9781450383431
          DOI:10.1145/3448016

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 18 June 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate785of4,003submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader