skip to main content
10.1145/3447548.3467224acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Learning to Recommend Visualizations from Data

Published:14 August 2021Publication History

ABSTRACT

Visualization recommendation is important for exploratory analysis and making sense of the data quickly by automatically recommending relevant visualizations to the user. In this work, we propose the first end-to-end ML-based visualization recommendation system that leverages a large corpus of datasets and their relevant visualizations to learn a visualization recommendation model automatically. Then, given a new unseen dataset from an arbitrary user, the model automatically generates visualizations for that new dataset, derives scores for the visualizations, and outputs a list of recommended visualizations to the user ordered by effectiveness. We also describe an evaluation framework to quantitatively evaluate visualization recommendation models learned from a large corpus of visualizations and datasets. Through quantitative experiments, a user study, and qualitative analysis, we show that our end-to-end ML-based system recommends more effective and useful visualizations compared to existing state-of-the-art rule-based systems.

Skip Supplemental Material Section

Supplemental Material

learning_to_recommend_visualizations_from-xin_qian-ryan_a_rossi-38957798-oCCr.mp4

mp4

114.7 MB

References

  1. Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. TKDE , Vol. 17, 6 (2005), 734--749.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anushka Anand and Justin Talbot. 2015. Automatic selection of partitioning variables for small multiple displays. TVCG , Vol. 22, 1 (2015), 669--677.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. James Bennett, Stan Lanning, et almbox. 2007. The netflix prize. In KDD Cup. 35.Google ScholarGoogle Scholar
  4. Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et almbox. 2016. Wide & deep learning for recommender systems. In Workshop on Deep Learning for Recommender Systems. 7--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Tuan Nhon Dang and Leland Wilkinson. 2014. Scagexplorer: Exploring scatterplots by their scagnostics. In IEEE Pacific visualization symposium .Google ScholarGoogle Scholar
  6. Cagatay Demiralp, Peter J Haas, Srinivasan Parthasarathy, and Tejaswini Pedapati. 2017. Foresight: Recommending Visual Insights. VLDB Endowment (2017).Google ScholarGoogle Scholar
  7. Mark Derthick, John Kolojejchick, and Steven F Roth. 1997. An interactive visualization environment for data exploration. In KDD. 2--9.Google ScholarGoogle Scholar
  8. Victor Dibia and cC aug atay Demiralp. 2019. Data2vis: Automatic generation of data visualizations using sequence-to-sequence recurrent neural networks. IEEE computer graphics and applications , Vol. 39, 5 (2019), 33--46.Google ScholarGoogle Scholar
  9. Humaira Ehsan, Mohamed Sharaf, and Panos Chrysanthis. 2016. Muve: Efficient multi-objective view recommendation for visual data exploration. In ICDE .Google ScholarGoogle Scholar
  10. David Gotz and Zhen Wen. 2009. Behavior-driven visualization recommendation. In IUI. 315--324.Google ScholarGoogle Scholar
  11. Camille Harris, Ryan A Rossi, Sana Malik, Jane Hoffswell, Fan Du, Tak Yeon Lee, Eunyee Koh, and Handong Zhao. 2021. Insight-centric Visualization Recommendation. arXiv:2103.11297 (2021).Google ScholarGoogle Scholar
  12. Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In SIGIR. 355--364.Google ScholarGoogle Scholar
  13. Jeffrey Heer, Nicholas Kong, and Maneesh Agrawala. 2009. Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations. In CHI. 1303--1312.Google ScholarGoogle Scholar
  14. Kevin Hu, Michiel Bakker, Stephen Li, Tim Kraska, and César Hidalgo. 2019. Vizml: A machine learning approach to visualization recommendation. In CHI .Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kevin Hu, Diana Orghian, and César Hidalgo. 2018. Dive: A mixed-initiative system supporting integrated data exploration workflows. In Workshop on Human-In-the-Loop Data Anal. 1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kalervo J"arvelin and Jaana Kek"al"ainen. 2002. Cumulated gain-based evaluation of IR techniques. TOIS , Vol. 20, 4 (2002), 422--446.Google ScholarGoogle Scholar
  17. Younghoon Kim and Jeffrey Heer. 2018. Assessing Effects of Task and Data Distribution on the Effectiveness of Visual Encodings. EuroVis (2018).Google ScholarGoogle Scholar
  18. Doris Jung-Lin Lee. 2020. Insight Machines: The Past, Present, and Future of Visualization Recommendation .Google ScholarGoogle Scholar
  19. Doris Jung-Lin Lee, Himel Dev, Huizi Hu, Hazem Elmeleegy, and Aditya Parameswaran. 2019 a. Avoiding drill-down fallacies with VisPilot: assisted exploration of data subsets. In IUI . 186--196.Google ScholarGoogle Scholar
  20. Doris Jung-Lin Lee, John Lee, Tarique Siddiqui, Jaewoo Kim, Karrie Karahalios, and Aditya Parameswaran. 2019 b. You can't always sketch what you want: Understanding Sensemaking in Visual Query Systems. TVCG , Vol. 26, 1 (2019), 1267--1277.Google ScholarGoogle Scholar
  21. Halden Lin, Dominik Moritz, and Jeffrey Heer. 2020. Dziban: Balancing Agency & Automation in Visualization Design via Anchored Recommendations. In CHI .Google ScholarGoogle Scholar
  22. Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com recommendations: Item-to-item collaborative filtering. Internet Computing , Vol. 7, 1 (2003), 76--80.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Yang Liu and Jeffrey Heer. 2018. Somewhere over the rainbow: An empirical assessment of quantitative colormaps. In CHI . 1--12.Google ScholarGoogle Scholar
  24. Jock Mackinlay. 1986. Automating the design of graphical presentations of relational information. ACM Trans. Graph. , Vol. 5, 2 (1986), 110--141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic presentation for visual analysis. TVCG , Vol. 13, 6 (2007), 1137--1144.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Dominik Moritz, Chenglong Wang, Greg L Nelson, Halden Lin, Adam M Smith, Bill Howe, and Jeffrey Heer. 2018. Formalizing visualization design knowledge as constraints: Actionable and extensible models in draco. TVCG , Vol. 25, 1 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  27. Michael Oppermann, Robert Kincaid, and Tamara Munzner. 2021. VizCommender: Computing Text-Based Similarity in Visualization Repositories for Content-Based Recommendations. TVCG , Vol. 27, 02 (2021), 495--505.Google ScholarGoogle ScholarCross RefCross Ref
  28. Daniel B Perry, Bill Howe, Alicia MF Key, and Cecilia Aragon. 2013. VizDeck: Streamlining exploratory visual analytics of scientific data. In iConference .Google ScholarGoogle Scholar
  29. Xin Qian, Ryan A Rossi, Fan Du, Sungchul Kim, Eunyee Koh, Sana Malik, Tak Yeon Lee, and Nesreen K Ahmed. 2021. Personalized Visualization Recommendation. arXiv:2102.06343 (2021).Google ScholarGoogle Scholar
  30. Xin Qian, Ryan A Rossi, Fan Du, Sungchul Kim, Eunyee Koh, Sana Malik, Tak Yeon Lee, and Joel Chan. 2020. ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data. arXiv:2009.12316 (2020).Google ScholarGoogle Scholar
  31. Steven F Roth, John Kolojejchick, Joe Mattis, and Jade Goldstein. 1994. Interactive graphic design using automatic presentation knowledge. In CHI . 112--117.Google ScholarGoogle Scholar
  32. Bahador Saket, Alex Endert, and cC aug atay Demiralp. 2018. Task-based effectiveness of basic visualizations. TVCG , Vol. 25, 7 (2018), 2505--2512.Google ScholarGoogle ScholarCross RefCross Ref
  33. Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. 1998. Discovery-driven exploration of OLAP data cubes. In Extending Database Tech. 168--182.Google ScholarGoogle Scholar
  34. Marc M. Sebrechts, John V. Cugini, Sharon J. Laskowski, Joanna Vasilakis, and Michael S. Miller. 1999. Visualization of Search Results: A Comparative Evaluation of Text, 2D, and 3D Interfaces. In SIGIR .Google ScholarGoogle Scholar
  35. Tarique Siddiqui, Albert Kim, John Lee, Karrie Karahalios, and Aditya Parameswaran. 2016. Effortless Data Exploration with zenvisage: An Expressive and Interactive Visual Analytics System. VLDB Endowment (2016).Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query, analysis, and visualization of multidimensional relational databases. TVCG , Vol. 8, 1 (2002), 52--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya Parameswaran. 2017. Towards visualization recommendation systems. SIGMOD , Vol. 45, 4 (2017), 34--39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and Neoklis Polyzotis. 2015. SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics. (2015).Google ScholarGoogle Scholar
  39. Leland Wilkinson, Anushka Anand, and Robert Grossman. 2005. Graph-theoretic scagnostics. In IEEE Symposium on Information Visualization . 157--164.Google ScholarGoogle Scholar
  40. Graham Wills and Leland Wilkinson. 2010. Autovis: automatic visualization. Information Visualization , Vol. 9, 1 (2010), 47--69.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2015. Voyager: Exploratory analysis via faceted browsing of visualization recommendations. TVCG , Vol. 22, 1 (2015), 649--658.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2016. Towards a general-purpose query language for visualization recommendation. In Workshop on Human-In-the-Loop Data Anal.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Kanit Wongsuphasawat, Zening Qu, Dominik Moritz, Riley Chang, Felix Ouk, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer. 2017. Voyager 2: Augmenting visual analysis with partial view specifications. In CHI . 2648--2659.Google ScholarGoogle Scholar
  44. Aoyu Wu, Liwenhan Xie, Bongshin Lee, Yun Wang, Weiwei Cui, and Huamin Qu. 2021. Learning to Automate Chart Layout Configurations Using Crowdsourced Paired Comparison. In CHI .Google ScholarGoogle Scholar

Index Terms

  1. Learning to Recommend Visualizations from Data

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
          August 2021
          4259 pages
          ISBN:9781450383325
          DOI:10.1145/3447548

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 14 August 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,133of8,635submissions,13%

          Upcoming Conference

          KDD '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader