skip to main content
10.1145/3447548.3467077acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

An Embedding Learning Framework for Numerical Features in CTR Prediction

Published:14 August 2021Publication History

ABSTRACT

Click-Through Rate (CTR) prediction is critical for industrial recommender systems, where most deep CTR models follow an Embedding & Feature Interaction paradigm. However, the majority of methods focus on designing network architectures to better capture feature interactions while the feature embedding, especially for numerical features, has been overlooked. Existing approaches for numerical features are difficult to capture informative knowledge because of the low capacity or hard discretization based on the offline expertise feature engineering. In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved. AutoDis consists of three core components: meta-embeddings, automatic discretization and aggregation. Specifically, we propose meta-embeddings for each numerical field to learn global knowledge from the perspective of field with a manageable number of parameters. Then the differentiable automatic discretization performs soft discretization and captures the correlations between the numerical features and meta-embeddings. Finally, distinctive and informative embeddings are learned via an aggregation function. Comprehensive experiments on two public and one industrial datasets are conducted to validate the effectiveness of AutoDis. Moreover, AutoDis has been deployed onto a mainstream advertising platform, where online A/B test demonstrates the improvement over the base model by 2.1% and 2.7% in terms of CTR and eCPM, respectively. In addition, the code of our framework is publicly available in MindSpore.

References

  1. 2020. MindSpore. https://www.mindspore.cn/Google ScholarGoogle Scholar
  2. Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proc. Workshop Deep Learning for Recommender Systems.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks for YouTube Recommendations. In RecSys.Google ScholarGoogle Scholar
  4. Antonio Ginart, Maxim Naumov, Dheevatsa Mudigere, Jiyan Yang, and James Zou. 2019. Mixed dimension embeddings with application to memory-efficient recommendation systems. arXiv preprint arXiv:1909.11810 (2019).Google ScholarGoogle Scholar
  5. Krzysztof Grabczewski and Norbert Jankowski. 2005. Feature Selection with Decision Tree Criterion. In HIS. IEEE Computer Society, 212--217.Google ScholarGoogle Scholar
  6. Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Lixin Zou, Yiding Liu, and Dawei Yin. 2020. Deep Multifaceted Transformers for Multi-objective Ranking in Large-Scale E-commerce Recommender Systems. In CIKM. ACM, 2493--2500.Google ScholarGoogle Scholar
  7. Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In IJCAI.Google ScholarGoogle Scholar
  8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV. 1026--1034.Google ScholarGoogle Scholar
  9. Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Qui n onero Candela. 2014. Practical Lessons from Predicting Clicks on Ads at Facebook. In ADKDD. ACM.Google ScholarGoogle Scholar
  10. Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction. In RecSys. ACM, 169--177.Google ScholarGoogle Scholar
  11. Manas R. Joglekar, Cong Li, Jay K. Adams, Pranav Khaitan, and Quoc V. Le. 2019. Neural Input Search for Large Scale Recommendation Models. CoRR, Vol. abs/1907.04471 (2019). arxiv: 1907.04471 http://arxiv.org/abs/1907.04471Google ScholarGoogle Scholar
  12. Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware Factorization Machines for CTR Prediction. In RecSys.Google ScholarGoogle Scholar
  13. Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong, and Ed H. Chi. 2020. Deep Hash Embedding for Large-Vocab Categorical Feature Representations. CoRR, Vol. abs/2010.10784 (2020).Google ScholarGoogle Scholar
  14. Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. 2019. DeepGBM: A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks. In SIGKDD. ACM, 384--394.Google ScholarGoogle Scholar
  15. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  16. Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. In SIGKDD.Google ScholarGoogle Scholar
  17. Bin Liu, Ruiming Tang, Yingzhi Chen, Jinkai Yu, Huifeng Guo, and Yuzhou Zhang. 2019. Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction. In WWW.Google ScholarGoogle Scholar
  18. Bin Liu, Niannan Xue, Huifeng Guo, Ruiming Tang, Stefanos Zafeiriou, Xiuqiang He, and Zhenguo Li. 2020 a. AutoGroup: Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction. In SIGIR. ACM.Google ScholarGoogle Scholar
  19. Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He, Zhenguo Li, and Yong Yu. 2020 b. AutoFIS: Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction. In SIGKDD.Google ScholarGoogle Scholar
  20. H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013. Ad click prediction: a view from the trenches. In SIGKDD. ACM, 1222--1230.Google ScholarGoogle Scholar
  21. Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model for Personalization and Recommendation Systems. CoRR, Vol. abs/1906.00091 (2019).Google ScholarGoogle Scholar
  22. Jiarui Qin, Weinan Zhang, Xin Wu, Jiarui Jin, Yuchen Fang, and Yong Yu. 2020. User Behavior Retrieval for Click-Through Rate Prediction. In SIGIR. ACM.Google ScholarGoogle Scholar
  23. Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. 2016. Product-based neural networks for user response prediction. In ICDM. IEEE, 1149--1154.Google ScholarGoogle Scholar
  24. Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng Guo, Yong Yu, and Xiuqiang He. 2019. Product-based Neural Networks for User Response Prediction over Multi-field Categorical Data. ACM Trans. Inf. Syst., Vol. 37, 1 (2019), 5:1--5:35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Steffen Rendle. 2010. Factorization Machines. In Proc. IEEE Int. Conf. Data Mining.Google ScholarGoogle Scholar
  26. Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM. 1161--1170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research, Vol. 9, 11 (2008).Google ScholarGoogle Scholar
  28. Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network for Ad Click Predictions. In ADKDD. ACM, 12:1--12:7.Google ScholarGoogle Scholar
  29. Yichao Wang, Huifeng Guo, Ruiming Tang, Zhirong Liu, and Xiuqiang He. 2020. A Practical Incremental Method to Train Deep CTR Models. CoRR, Vol. abs/2009.02147 (2020).Google ScholarGoogle Scholar
  30. Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field categorical data. In ECIR. Springer, 45--57.Google ScholarGoogle Scholar
  31. Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and Jiliang Tang. 2020. AutoEmb: Automated Embedding Dimensionality Search in Streaming Recommendations. arXiv preprint arXiv:2002.11252 (2020).Google ScholarGoogle Scholar
  32. Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai. 2019. Deep Interest Evolution Network for Click-Through Rate Prediction. In AAAI. 5941--5948.Google ScholarGoogle Scholar
  33. Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In SIGKDD. 1059--1068.Google ScholarGoogle Scholar

Index Terms

  1. An Embedding Learning Framework for Numerical Features in CTR Prediction

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
        August 2021
        4259 pages
        ISBN:9781450383325
        DOI:10.1145/3447548

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 14 August 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,133of8,635submissions,13%

        Upcoming Conference

        KDD '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader