skip to main content
10.1145/3434780.3436546acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

Learning physical geodesy. Application case to geoid undulation computation

Published:22 January 2021Publication History

ABSTRACT

The present article shows a novel approach for the acquisition of competences related to physical geodesy in the Bachelor's Degree in Geomatics using virtual materials to promote the autonomous learning and support it during exceptional periods of confinement, like the Covid-19 pandemic. More specifically, the article is focused in the geoid undulation determination, which is a critical issue in hydraulic works, land subsidence, and civil projects. So, this concept has to be learned in the Bachelor's Degree in Geomatics for the proper acquisition of competences. The approach is aimed to three-dimensional fitting techniques and statistical analysis to improve the comprehension and interpretation of the different local geoid models from the same set of field measurements, and therefore the conclusions and analysis derived from them for the subsequent Geomatic practical works. The current contribution is originated from the virtual laboratories’ paradigm, as it is proposed the use of virtual materials for the acquisition and evaluation of competences and skills in an asynchronous way, that can be use not only for and e-learning or b-learning programs, but also as support for traditional face to face programs. The present contribution will help the students to contextualize the theoretical knowledge, so better understand the challenges they will face in the working market as future professionals.

References

  1. Bernhard Hofmann-Wellehof and Helmut Moritz. 2006. Physical Geodesy (2nd. ed.). Springer, Austria.Google ScholarGoogle Scholar
  2. Fernando Sanso. 1987. Problema de contorno de la geodesia física. IV Curso de geodesia superior, 156, 37-96.Google ScholarGoogle Scholar
  3. María Amparo Núñez, Ángel Martín, Josep A. Gili and Ana Belén Anquela. 2008. High-precision geoid determination in small areas: A case study in Doñana National Park (Spain). Studia Geophysica et Geodaetica, 52, 3, 361-380. DOI: https://doi.org/10.1007/s11200-008-0026-yGoogle ScholarGoogle ScholarCross RefCross Ref
  4. Guoquan Wang and Tomás Soler. 2015. Measuring land subsidence using GPS: ellipsoid height versus orthometric height. Journal of surveying engineering, 141, 2, 05014004, 12 pp. DOI: https://doi.org/10.1061/(ASCE)SU.1943-5428.0000137Google ScholarGoogle Scholar
  5. David Lago González and Pablo Rodríguez-Gonzálvez. 2019. Detection of Geothermal Potential Zones Using Remote Sensing Techniques. Remote Sensing, 11, 20, 2403, 20 pp. DOI: https://doi.org/10.3390/rs11202403Google ScholarGoogle Scholar
  6. Samia Rochdane, Abdennabi El Mandour, Mohammed Jaffal, Mahjoub Himi, Albert Casas, Mostafa Amrhar and Morad Karroum. 2015. Geometry of the eastern Haouz and Tassaout aquifers, Western Morocco: Geophysical and hydrogeological approach. Hydrological Sciences Journal, 60, 1, 133–144. DOI: https://doi.org/10.1080/02626667.2014.979174Google ScholarGoogle ScholarCross RefCross Ref
  7. Mirahmad Mirghasempour and Ali Yaser Jafari. 2015. The Role of Astro-Geodetic in Precise Guidance of Long Tunnels. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1, W5, 453-457. DOI: https://doi.org/10.5194/isprsarchives-XL-1-W5-453-2015Google ScholarGoogle Scholar
  8. Ruben Heradio, Luis de la Torre, Daniel Galán, Francisco Javier Cabrerizo, Enrique Herrera-Viedma and Sebastian Dormido. 2016. Virtual and remote labs in education: a bibliometric analysis. Computers & Education, 98 (July 2016), 14–38. DOI: https://doi.org/10.1016/j.compedu.2016.03.010Google ScholarGoogle Scholar
  9. Özedn Mirçik and Ahmet Zeki Saka 2018. Virtual laboratory applications in physics teaching. Canadian Journal of Physics, 96, 7, 745-750. DOI: https://doi.org/10.1139/cjp-2017-0748Google ScholarGoogle ScholarCross RefCross Ref
  10. Kang Hao Cheong and Jin Ming Koh. 2018. Integrated virtual laboratory in engineering mathematics education: Fourier theory. IEEE Access, 6, 58231-58243. DOI: https://doi.org/10.1109/ACCESS.2018.2873815Google ScholarGoogle ScholarCross RefCross Ref
  11. Manuel Rodríguez-Martín and Pablo Rodríguez-Gonzálvez. 2019. Learning methodology based on weld virtual models in the mechanical engineering classroom. Computer Applications in Engineering Education, 27, 5, 1113-1125. DOI: https://doi.org/10.1002/cae.22140Google ScholarGoogle ScholarCross RefCross Ref
  12. Manuel Rodríguez-Martín and Pablo Rodríguez-Gonzálvez. 2019. Materiales formativos 3D desde ingeniería inversa para el aprendizaje de la inspección de soldaduras. DYNA Ingeniería e industria, 94, 3, 238-239. DOI: http://dx.doi.org/10.6036/8798Google ScholarGoogle Scholar
  13. Arturo Soriano, Pedro Ponce and Arturo Molina. 2020. Virtual Laboratory to Face New Challenges in the Industry: Virtual Laboratory as Part of the New Education Age. Revolutionizing Education in the Age of AI and Machine Learning (pp. 114-129). IGI Global.Google ScholarGoogle Scholar
  14. Francisco José García-Peñalvo, Alfredo Corell, Víctor Abella-García, Mario Grande. 2020. La evaluación online en la educación superior en tiempos de la COVID-19. Education in the Knowledge Society, 21, 12, 26 pp. DOI: https://doi.org/10.14201/eks.23013Google ScholarGoogle Scholar
  15. John Anthony Rossiter. 2016. Low production cost virtual modelling and control laboratories for chemical engineering students. In Proceedings of 20th IFAC Symposium on Automatic Control in Aerospace, Quebec, 230-235. DOI: https://doi.org/10.1016/j.ifacol.2016.07.182Google ScholarGoogle ScholarCross RefCross Ref
  16. Manuel Rodríguez-Martín, Pablo Rodríguez-Gonzálvez, Alberto Sánchez-Patrocinio and José Ramón Sánchez. 2019. Short CFD simulation activities in the context of fluid-mechanical learning in a multidisciplinary student body. Applied Sciences, 9, 22, 4809, 17 pp. DOI: https://doi.org/10.3390/app9224809Google ScholarGoogle Scholar
  17. Ministry of Science and Innovation (Government of Spain). Orden CIN/353/2009, de 9 de febrero, por la que se establecen los requisitos para la verificación de los títulos universitarios oficiales que habiliten para el ejercicio de la profesión de Ingeniero Técnico en Topografía. (February 2009).Google ScholarGoogle Scholar
  18. Manuel Rodríguez-Martín and Pablo Rodríguez-Gonzálvez. 2018. Learning based on 3D photogrammetry models to evaluate the competences in visual testing of welds. In Proceedings of the 2018 IEEE Global Engineering Education Conference. IEEE. Santa Cruz de Tenerife, Spain, 1582-1587. DOI: https://doi.org/10.1109/EDUCON.2018.8363422Google ScholarGoogle ScholarCross RefCross Ref
  19. Pablo Rodríguez-Gonzálvez, Manuel Rodríguez-Martín, Beatriz Alonso-Cortés Fradejas and Ildefonso Alvear-Ordenes. 2018. 3D Visualization Techniques in Health Science Learning. Application case of Thermographic Images to Blood Flow Monitoring. In Proceedings of Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’18). ACM, New York, NY, USA, 373-380. DOI: https://doi.org/10.1145/3284179.3284243Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Instituto Geográfico Nacional. 2020. Geodesy: Viewer, Queries and Resources. Retrieved July 21, 2020 from http://www.ign.es/web/ign/portal/gds-area-geodesiaGoogle ScholarGoogle Scholar
  21. International Centre for Global Earth Models. 2020. Calculation of Gravity Field Functionals on Ellipsoidal Grids. Retrieved July 21, 2020 from http://icgem.gfz-potsdam.de/calcgridGoogle ScholarGoogle Scholar
  22. Octave. 2020. Scientific Programming Language Version 5.2. Retrieved 20 July, 2020 from https://www.gnu.org/software/octave/Google ScholarGoogle Scholar
  23. Munther Gdeisat and Francis Lilley, 2012. MATLAB® by Example: Programming Basics. Newness, USA.Google ScholarGoogle Scholar
  24. Wolfram Research Inc. 2020. Mathematica. Version 12.1 Retrieved 20 July, 2020 from https://www.wolfram.com/mathematicaGoogle ScholarGoogle Scholar
  25. Hossein Nahavandchi and Ali Soltanpour. 2006. Improved determination of heights using a conversion surface by combining gravimetric quasi-geoid/geoid and GPS-levelling height differences. Studia Geophysica et Geodaetica, 50, 2, 165-180. DOI: https://doi.org/10.1007/s11200-006-0010-3Google ScholarGoogle ScholarCross RefCross Ref
  26. Piroska Zaletnyik, Lajos Volgyesi, István Kirchner and Béla Paláncz. 2007. Combination of GPS/leveling and the gravimetric geoid by using the thin plate spline interpolation technique via finite element method. Journal of Applied Geodesy, 1, 4, 233-239. DOI: https://doi.org/10.1515/jag.2007.025Google ScholarGoogle ScholarCross RefCross Ref
  27. Nikolaos K. Pavlis, Simon A. Holmes, Steve C. Kenyon and John K. Factor. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research: solid earth, 117, B4, B04406, 38 pp. DOI: https://doi.org/10.1029/2011JB008916Google ScholarGoogle Scholar
  28. Christoph Förste, Sean L. Bruinsma, Oleg Abrikosov, Jean-Michel Lemoine, Jean Charles Marty, Frank Flechtner, G. Balmino, F. Barthelmes, R. Biancale. 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. DOI: http://doi.org/10.5880/icgem.2015.1Google ScholarGoogle Scholar
  29. José Antonio Sánchez Sobrino, Adolfo Daldan Mourón, Antonio Barbadillo Fernández. 2009. El nuevo modelo de Geoide para España EGM08-REDNAR. Topografía y Cartografía: Revista del Ilustre Colegio Oficial de Ingenieros Técnicos en Topografía, 26, 155, 4-16.Google ScholarGoogle Scholar
  30. Alberto Alonso-Izquierdo, 2020. Specific mathematical software to solve some problems. Calculus for Engineering Students (pp. 327-347). Elsevier Inc. DOI: https://doi.org/10.1016/B978-0-12-817210-0.00022-9Google ScholarGoogle Scholar
  31. CloudCompare. 2020. CloudCompare Version 2.11.0 [GPL software]. Retrieved July 21, 2020 from http://www.cloudcompare.org/Google ScholarGoogle Scholar
  32. Pablo Rodríguez-Gonzálvez, Jesús Garcia-Gago, Javier Gomez-Lahoz, and Diego González-Aguilera. 2014. Confronting Passive and Active Sensors with Non-Gaussian Statistics. Sensors 14, 8, 13759-13777. DOI: https://doi.org/10.3390/s140813759Google ScholarGoogle ScholarCross RefCross Ref
  1. Learning physical geodesy. Application case to geoid undulation computation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      TEEM'20: Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality
      October 2020
      1084 pages
      ISBN:9781450388504
      DOI:10.1145/3434780

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 January 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate496of705submissions,70%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format