skip to main content
research-article
Open Access

Cyclic proofs, system t, and the power of contraction

Authors Info & Claims
Published:04 January 2021Publication History
Skip Abstract Section

Abstract

We study a cyclic proof system C over regular expression types, inspired by linear logic and non-wellfounded proof theory. Proofs in C can be seen as strongly typed goto programs. We show that they denote computable total functions and we analyse the relative strength of C and Gödel’s system T. In the general case, we prove that the two systems capture the same functions on natural numbers. In the affine case, i.e., when contraction is removed, we prove that they capture precisely the primitive recursive functions—providing an alternative and more general proof of a result by Dal Lago, about an affine version of system T.

Without contraction, we manage to give a direct and uniform encoding of C into T, by analysing cycles and translating them into explicit recursions. Whether such a direct and uniform translation from C to T can be given in the presence of contraction remains open.

We obtain the two upper bounds on the expressivity of C using a different technique: we formalise weak normalisation of a small step reduction semantics in subsystems of second-order arithmetic: ACA0 and RCA0.

References

  1. Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. 2002. Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12, 5 ( 2002 ), 625-665. https://doi.org/10.1017/S0960129502003730 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bahareh Afshari and Graham E. Leigh. 2017. Cut-free completeness for modal mu-calculus. In LiCS. IEEE, 1-12. https: //doi.org/10.1109/LICS. 2017.8005088 Google ScholarGoogle ScholarCross RefCross Ref
  3. Jeremy Avigad. 1996. Formalizing forcing arguments in subsystems of second-order arithmetic. Annals of Pure and Applied Logic 82, 2 ( 1996 ), 165-191. https://doi.org/10.1016/ 0168-0072 ( 96 ) 00003-6 Google ScholarGoogle ScholarCross RefCross Ref
  4. Jeremy Avigad and Solomon Feferman. 1998. Gödel's Functional Interpretation. In Handbook of Proof Theory, Samuel R. Buss (Ed.). Elsevier.Google ScholarGoogle Scholar
  5. Patrick Baillot and Marco Pedicini. 2001. Elementary complexity and geometry of interaction. Fundamenta Informaticae 45, 1-2 ( 2001 ), 1-31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Stefano Berardi and Makoto Tatsuta. 2017a. Classical System of Martin-Löf's Inductive Definitions Is Not Equivalent to Cyclic Proof System. In FoSSaCS. Springer Verlag, 301-317. https://doi.org/10.1007/978-3-662-54458-7_18 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Stefano Berardi and Makoto Tatsuta. 2017b. Equivalence of inductive definitions and cyclic proofs under arithmetic. In LiCS. IEEE, 1-12. https://doi.org/10.1109/LICS. 2017.8005114 Google ScholarGoogle ScholarCross RefCross Ref
  8. James Brotherston. 2005. Cyclic Proofs for First-Order Logic with Inductive Definitions. In TABLEAUX (Lecture Notes in Artificial Intelligence, Vol. 3702 ). Springer Verlag, 78-92. https://doi.org/10.1007/11554554_8 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. James Brotherston and Alex Simpson. 2011. Sequent calculi for induction and infinite descent. Journal of Logic and Computation 21, 6 ( 2011 ), 1177-1216. https://doi.org/10.1093/logcom/exq052 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Samuel R. Buss. 1995. The witness function method and provably recursive functions of Peano arithmetic. In Studies in Logic and the Foundations of Mathematics. Vol. 134. Elsevier, 29-68. https://doi.org/10.1016/ S0049-237X( 06 ) 80038-8 Google ScholarGoogle ScholarCross RefCross Ref
  11. Samuel R Buss. 1998. Handbook of proof theory. Vol. 137. Elsevier.Google ScholarGoogle Scholar
  12. Ugo Dal Lago. 2009. The geometry of linear higher-order recursion. ACM Trans. Comput. Log. 10, 2 ( 2009 ), 8 : 1-8 : 38. https://doi.org/10.1145/1462179.1462180 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Anupam Das. 2020. On the logical complexity of cyclic arithmetic. Logical Methods in Computer Science 16, 1 (Jan. 2020 ). https://doi.org/10.23638/LMCS-16 ( 1 :1) 2020 Google ScholarGoogle ScholarCross RefCross Ref
  14. Anupam Das, Amina Doumane, and Damien Pous. 2018. Left-handed completeness for Kleene algebra, via cyclic proofs. In LPAR (EPiC Series in Computing, Vol. 57 ). Easychair, 271-289. https://doi.org/10.29007/hzq3 Google ScholarGoogle ScholarCross RefCross Ref
  15. Anupam Das and Damien Pous. 2017. A cut-free cyclic proof system for Kleene algebra. In TABLEAUX (Lecture Notes in Computer Science, Vol. 10501 ). Springer Verlag, 261-277. https://doi.org/10.1007/978-3-319-66902-1_16 Google ScholarGoogle ScholarCross RefCross Ref
  16. Anupam Das and Damien Pous. 2018. Non-wellfounded proof theory for (Kleene+action)(algebras+lattices). In CSL (LIPIcs, Vol. 119 ). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 18 : 1-18 : 19. https://doi.org/10.4230/LIPIcs.CSL. 2018.19 Google ScholarGoogle ScholarCross RefCross Ref
  17. Amina Doumane. 2017. Constructive completeness for the linear-time-calculus. In LiCS. IEEE, 1-12. https://doi.org/10. 1109/LICS. 2017.8005075 Google ScholarGoogle ScholarCross RefCross Ref
  18. Amina Doumane, David Baelde, and Alexis Saurin. 2016. Infinitary proof theory: the multiplicative additive case. In CSL (LIPIcs, Vol. 62 ). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 42 : 1-42 : 17. https://doi.org/10.4230/LIPIcs.CSL. 2016.42 Google ScholarGoogle ScholarCross RefCross Ref
  19. Jérôme Fortier and Luigi Santocanale. 2013. Cuts for circular proofs: semantics and cut-elimination. In CSL (LIPIcs, Vol. 23 ). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 248-262. https://doi.org/10.4230/LIPIcs.CSL. 2013.248 Google ScholarGoogle ScholarCross RefCross Ref
  20. Jean-Yves Girard. 1995. Geometry of interaction III: accommodating the additives. In workshop on Advances in linear logic. Cambridge University Press, 329-389.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge University Press, USA.Google ScholarGoogle Scholar
  22. Von Kurt Gödel. 1958. Über eine bisher noch nicht benütze erweiterung des finiten standpunktes. Dialectica 12, 3-4 ( 1958 ), 280-287. https://doi.org/10.1111/j.1746-8361. 1958.tb01464.x Google ScholarGoogle ScholarCross RefCross Ref
  23. Denis R. Hirschfeldt. 2014. Slicing the truth: On the computable and reverse mathematics of combinatorial principles. World Scientific.Google ScholarGoogle Scholar
  24. Naohiko Hoshino, Koko Muroya, and Ichiro Hasuo. 2014. Memoryful geometry of interaction: from coalgebraic components to algebraic efects. In CSL-LiCS. ACM, 52. https://doi.org/10.1145/2603088.2603124 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leszek Kołodziejczyk, Henryk Michalewski, Pierre Pradic, and Michał Skrzypczak. 2019. The logical strength of Büchi's decidability theorem. Logical Methods in Computer Science 15, 2 (May 2019 ). https://doi.org/10.23638/LMCS-15 ( 2 :16) 2019 Google ScholarGoogle ScholarCross RefCross Ref
  26. Denis Kuperberg, Laureline Pinault, and Damien Pous. 2019. Cyclic Proofs and Jumping Automata. In FSTTCS (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Bombay, India, 45 : 1-45 : 14. https://doi.org/10.4230/LIPIcs.FSTTCS. 2019.45 Google ScholarGoogle ScholarCross RefCross Ref
  27. Denis Kuperberg, Laureline Pinault, and Damien Pous. 2021. Cyclic proofs, system T, and the power of contraction-extended version, with appendices. https://hal.archives-ouvertes.fr/hal-02487175/documentGoogle ScholarGoogle Scholar
  28. Dorel Lucanu, Eugen-Ioan Goriac, Georgiana Caltais, and Grigore Rosu. 2009. CIRC: A Behavioral Verification Tool Based on Circular Coinduction. In CALCO (Lecture Notes in Computer Science, Vol. 5728 ). Springer Verlag, 433-442. https://doi.org/10.1007/978-3-642-03741-2_30 Google ScholarGoogle ScholarCross RefCross Ref
  29. Dorel Lucanu and Vlad Rusu. 2015. Program equivalence by circular reasoning. Formal Aspects of Computing 27, 4 ( 2015 ), 701-726. https://doi.org/10.1007/s00165-014-0319-6 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Charles Parsons. 1972. On n-quantifier induction. The Journal of Symbolic Logic 37, 3 ( 1972 ), 466-482.Google ScholarGoogle ScholarCross RefCross Ref
  31. Alex Simpson. 2017. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In FoSSaCS (Lecture Notes in Computer Science, Vol. 10203 ). Springer Verlag, 283-300. https://doi.org/10.1007/978-3-662-54458-7_17 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stephen G. Simpson. 2009. Subsystems of second order arithmetic. Vol. 1. Cambridge University Press.Google ScholarGoogle Scholar
  33. William W. Tait. 1965. Infinitely Long Terms of Transfinite Type. In Formal Systems and Recursive Functions, J.N. Crossley and M.A.E. Dummett (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 40. Elsevier, 176-185. https: //doi.org/10.1016/ S0049-237X( 08 ) 71689-6 Google ScholarGoogle ScholarCross RefCross Ref
  34. William W. Tait. 1967. Intensional Interpretations of Functionals of Finite Type I. The Journal of Symbolic Logic 32, 2 ( 1967 ), 198-212. https://doi.org/10.2307/2271658 Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Cyclic proofs, system t, and the power of contraction

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader