skip to main content
10.1145/3411764.3445582acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

Pose-on-the-Go: Approximating User Pose with Smartphone Sensor Fusion and Inverse Kinematics

Authors Info & Claims
Published:07 May 2021Publication History

ABSTRACT

We present Pose-on-the-Go, a full-body pose estimation system that uses sensors already found in today’s smartphones. This stands in contrast to prior systems, which require worn or external sensors. We achieve this result via extensive sensor fusion, leveraging a phone’s front and rear cameras, the user-facing depth camera, touchscreen, and IMU. Even still, we are missing data about a user’s body (e.g., angle of the elbow joint), and so we use inverse kinematics to estimate and animate probable body poses. We provide a detailed evaluation of our system, benchmarking it against a professional-grade Vicon tracking system. We conclude with a series of demonstration applications that underscore the unique potential of our approach, which could be enabled on many modern smartphones with a simple software update.

Skip Supplemental Material Section

Supplemental Material

3411764.3445582_videofigure.mp4

Supplemental video

mp4

251.4 MB

References

  1. Karan Ahuja, Mayank Goel, and Chris Harrison. 2020. BodySLAM: Opportunistic User Digitization in Multi-User AR/VR Experiences. In Symposium on Spatial User Interaction (Virtual Event, Canada) (SUI ’20). Association for Computing Machinery, New York, NY, USA, Article 16, 8 pages. https://doi.org/10.1145/3385959.3418452Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Karan Ahuja, Chris Harrison, Mayank Goel, and Robert Xiao. 2019. MeCap: Whole-Body Digitization for Low-Cost VR/AR Headsets. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA, 453–462. https://doi.org/10.1145/3332165.3347889Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Karan Ahuja, Andy Kong, Mayank Goel, and Chris Harrison. 2020. Direction-of-Voice (DoV) Estimation for Intuitive Speech Interaction with Smart Devices Ecosystems(UIST ’20). Association for Computing Machinery, New York, NY, USA, 1121–1131. https://doi.org/10.1145/3379337.3415588Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. 2018. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR ’18). IEEE, 7297–7306. https://doi.org/10.1109/CVPR.2018.00762Google ScholarGoogle ScholarCross RefCross Ref
  5. ALT LLC. 2020. Antilatency. Retrieved 2020 from https://antilatency.com/Google ScholarGoogle Scholar
  6. Raphael Anderegg, Loïc Ciccone, and Robert W. Sumner. 2018. PuppetPhone: Puppeteering Virtual Characters Using a Smartphone. In Proceedings of the 11th Annual International Conference on Motion, Interaction, and Games (Limassol, Cyprus) (MIG ’18). Association for Computing Machinery, New York, NY, USA, Article 5, 6 pages. https://doi.org/10.1145/3274247.3274511Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Apple Inc.2020. Apple Developer - ARFaceAnchor. Retrieved 2020 from https://developer.apple.com/documentation/arkit/arfaceanchorGoogle ScholarGoogle Scholar
  8. Apple Inc.2020. Apple Developer - CoreMotion Activity. Retrieved 2020 from https://developer.apple.com/documentation/coremotion/cmmotionactivityGoogle ScholarGoogle Scholar
  9. Apple Inc.2020. Apple Developer - CoreMotion Pedometer. Retrieved 2020 from https://developer.apple.com/documentation/coremotion/cmpedometerdataGoogle ScholarGoogle Scholar
  10. Apple Inc.2020. Support - Animoji. Retrieved 2020 from https://support.apple.com/en-au/HT208190Google ScholarGoogle Scholar
  11. Teo Babic, Florian Perteneder, Harald Reiterer, and Michael Haller. 2020. Simo: Interactions with Distant Displays by Smartphones with Simultaneous Face and World Tracking. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3334480.3382962Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. 2018. Openface 2.0: Facial behavior analysis toolkit. In 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG ’18). IEEE, 59–66. https://doi.org/10.1109/FG.2018.00019Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated acceleration data. In International conference on pervasive computing. Springer, 1–17.Google ScholarGoogle ScholarCross RefCross Ref
  14. Steve Benford, John Bowers, Lennart E. Fahlén, Chris Greenhalgh, and Dave Snowdon. 1995. User Embodiment in Collaborative Virtual Environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’95). ACM Press/Addison-Wesley Publishing Co., USA, 242–249. https://doi.org/10.1145/223904.223935Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Barry Brown and Marek Bell. 2004. CSCW at Play: ’there’ as a Collaborative Virtual Environment. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work (Chicago, Illinois, USA) (CSCW ’04). Association for Computing Machinery, New York, NY, USA, 350–359. https://doi.org/10.1145/1031607.1031666Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR ’17). IEEE, 7291–7299. https://doi.org/10.1109/CVPR.2017.143Google ScholarGoogle ScholarCross RefCross Ref
  17. Ke-Yu Chen, Shwetak N. Patel, and Sean Keller. 2016. Finexus: Tracking Precise Motions of Multiple Fingertips Using Magnetic Sensing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 1504–1514. https://doi.org/10.1145/2858036.2858125Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Weiya Chen, Chenchen Yu, Chenyu Tu, Zehua Lyu, Jing Tang, Shiqi Ou, Yan Fu, and Zhidong Xue. 2020. A Survey on Hand Pose Estimation with Wearable Sensors and Computer-Vision-Based Methods. Sensors 20, 4 (2020), 1074. https://doi.org/10.3390/s20041074Google ScholarGoogle ScholarCross RefCross Ref
  19. Xiang ’Anthony’ Chen, Julia Schwarz, Chris Harrison, Jennifer Mankoff, and Scott Hudson. 2014. Around-Body Interaction: Sensing & Interaction Techniques for Proprioception-Enhanced Input with Mobile Devices. In Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices & Services (Toronto, ON, Canada) (MobileHCI ’14). Association for Computing Machinery, New York, NY, USA, 287–290. https://doi.org/10.1145/2628363.2628402Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Amit Das, Ivan Tashev, and Shoaib Mohammed. 2017. Ultrasound based gesture recognition. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP ’17). IEEE, 406–410. https://doi.org/10.1109/ICASSP.2017.7952187Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Muybridge Eadweard. 1878. The Horse in Motion.Google ScholarGoogle Scholar
  22. Facebook Technologies LLC. 2020. Oculus Quest. Retrieved 2020 from https://www.oculus.com/questGoogle ScholarGoogle Scholar
  23. Bo Fan, Lei Xie, Shan Yang, Lijuan Wang, and Frank K Soong. 2016. A deep bidirectional LSTM approach for video-realistic talking head. Multimedia Tools and Applications 75, 9 (2016), 5287–5309.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Eric Foxlin and Michael Harrington. 2000. WearTrack: a self-referenced head and hand tracker for wearable computers and portable VR. In Digest of Papers. Fourth International Symposium on Wearable Computers(ISWC ’00). IEEE, 155–162. https://doi.org/10.1109/ISWC.2000.888482Google ScholarGoogle ScholarCross RefCross Ref
  25. Sehoon Ha, Yunfei Bai, and C. Karen Liu. 2011. Human Motion Reconstruction from Force Sensors. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA ’11). Association for Computing Machinery, New York, NY, USA, 129–138. https://doi.org/10.1145/2019406.2019424Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Edward Twitchell Hall. 1962. Proxemics: The study of man’s spatial relations.Google ScholarGoogle Scholar
  27. Chris Harrison, Hrvoje Benko, and Andrew D. Wilson. 2011. OmniTouch: Wearable Multitouch Interaction Everywhere. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New York, NY, USA, 441–450. https://doi.org/10.1145/2047196.2047255Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Chris Harrison, Julia Schwarz, and Scott E. Hudson. 2011. TapSense: Enhancing Finger Interaction on Touch Surfaces. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (Santa Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New York, NY, USA, 627–636. https://doi.org/10.1145/2047196.2047279Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gregor Hofer, Junichi Yamagishi, and Hiroshi Shimodaira. 2008. Speech-driven lip motion generation with a trajectory HMM. (2008).Google ScholarGoogle Scholar
  30. Notch Interfaces Inc.2020. Notch Interfaces. Retrieved 2020 from https://wearnotch.com/Google ScholarGoogle Scholar
  31. Intel Corporation. 2020. RealSense. Retrieved 2020 from https://www.intelrealsense.com/Google ScholarGoogle Scholar
  32. Stephen S. Intille, Ling Bao, Emmanuel Munguia Tapia, and John Rondoni. 2004. Acquiring in Situ Training Data for Context-Aware Ubiquitous Computing Applications. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vienna, Austria) (CHI ’04). Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/10.1145/985692.985693Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Haojian Jin, Zhijian Yang, Swarun Kumar, and Jason I. Hong. 2018. Towards Wearable Everyday Body-Frame Tracking Using Passive RFIDs. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 4, Article 145 (Jan. 2018), 23 pages. https://doi.org/10.1145/3161199Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Vahid Kazemi and Josephine Sullivan. 2014. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR ’14). IEEE Computer Society, USA, 1867–1874. https://doi.org/10.1109/CVPR.2014.241Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. David Kim, Otmar Hilliges, Shahram Izadi, Alex D. Butler, Jiawen Chen, Iason Oikonomidis, and Patrick Olivier. 2012. Digits: Freehand 3D Interactions Anywhere Using a Wrist-Worn Gloveless Sensor. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology(Cambridge, Massachusetts, USA) (UIST ’12). Association for Computing Machinery, New York, NY, USA, 167–176. https://doi.org/10.1145/2380116.2380139Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Daehwa Kim, Keunwoo Park, and Geehyuk Lee. 2020. OddEyeCam: A Sensing Technique for Body-Centric Peephole Interaction Using WFoV RGB and NFoV Depth Cameras. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 85–97. https://doi.org/10.1145/3379337.3415889Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Huy Viet Le, Sven Mayer, and Niels Henze. 2019. Investigating the Feasibility of Finger Identification on Capacitive Touchscreens Using Deep Learning. In Proceedings of the 24th International Conference on Intelligent User Interfaces (Marina del Ray, California) (IUI ’19). Association for Computing Machinery, New York, NY, USA, 637–649. https://doi.org/10.1145/3301275.3302295Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mingyang Li and Anastasios I Mourikis. 2013. 3-D motion estimation and online temporal calibration for camera-IMU systems. In 2013 IEEE International Conference on Robotics and Automation(ICRA ’13). IEEE, IEEE, 5709–5716. https://doi.org/10.1109/ICRA.2013.6631398Google ScholarGoogle ScholarCross RefCross Ref
  39. Sven Mayer, Huy Viet Le, and Niels Henze. 2017. Estimating the Finger Orientation on Capacitive Touchscreens Using Convolutional Neural Networks. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces (Brighton, United Kingdom) (ISS ’17). Association for Computing Machinery, New York, NY, USA, 220–229. https://doi.org/10.1145/3132272.3134130Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Meta Motion. 2018. Gypsy Motion Capture System. Retrieved 2021 from http://metamotion.com/gypsy/gypsy-motion-capture-system.htmGoogle ScholarGoogle Scholar
  41. Microsoft Corporation. 2010. Microsoft Kinect. Retrieved 2021 from https://en.wikipedia.org/wiki/KinectGoogle ScholarGoogle Scholar
  42. Microsoft Corporation. 2010. Microsoft Kinect Games. Retrieved 2021 from https://en.wikipedia.org/wiki/Category:Kinect_gamesGoogle ScholarGoogle Scholar
  43. Microsoft Corporation. 2019. HoloLens. Retrieved 2021 from https://www.microsoft.com/en-us/hololensGoogle ScholarGoogle Scholar
  44. Nathan Miller, Odest Chadwicke Jenkins, Marcelo Kallmann, and Maja J Mataric. 2004. Motion capture from inertial sensing for untethered humanoid teleoperation. In 4th IEEE/RAS International Conference on Humanoid Robots(ICHR ’04, Vol. 2). IEEE, 547–565. https://doi.org/10.1109/ICHR.2004.1442670Google ScholarGoogle ScholarCross RefCross Ref
  45. NaturalPoint Inc.2020. OptiTrack. Retrieved 2020 from http://optitrack.comGoogle ScholarGoogle Scholar
  46. Seungtak Noh, Hui-Shyong Yeo, and Woontack Woo. 2015. An HMD-based Mixed Reality System for Avatar-Mediated Remote Collaboration with Bare-hand Interaction. In International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments(ICAT-EGVE ’15). The Eurographics Association, 61–68. https://doi.org/10.2312/egve.20151311Google ScholarGoogle ScholarCross RefCross Ref
  47. Northern Digital Inc. 2020. trakSTAR. Retrieved 2020 from https://www.ndigital.com/msci/products/drivebay-trakstar/Google ScholarGoogle Scholar
  48. OpenNI. 2020. OpenNI. Retrieved 2020 from https://structure.io/openniGoogle ScholarGoogle Scholar
  49. George Papandreou, Tyler Zhu, Liang-Chieh Chen, Spyros Gidaris, Jonathan Tompson, and Kevin Murphy. 2018. Personlab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In Proceedings of the European Conference on Computer Vision(ECCV ’18). 269–286. https://doi.org/10.1007/978-3-030-01264-9_17Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Mathias Parger, Joerg H. Mueller, Dieter Schmalstieg, and Markus Steinberger. 2018. Human Upper-Body Inverse Kinematics for Increased Embodiment in Consumer-Grade Virtual Reality(VRST ’18). Association for Computing Machinery, New York, NY, USA, Article 23, 10 pages. https://doi.org/10.1145/3281505.3281529Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. PhaseSpace Inc.2020. PhaseSpace. Retrieved 2020 from https://phasespace.com/Google ScholarGoogle Scholar
  52. Thammathip Piumsomboon, Gun A. Lee, Jonathon D. Hart, Barrett Ens, Robert W. Lindeman, Bruce H. Thomas, and Mark Billinghurst. 2018. Mini-Me: An Adaptive Avatar for Mixed Reality Remote Collaboration. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3173620Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Polhemus. 2020. Polhemus. Retrieved 2020 from https://polhemus.com/case-study/detail/polhemus-motion-capture-system-is-used-to-measure-real-time-motion-analysisGoogle ScholarGoogle Scholar
  54. Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad Shafiei, Hans-Peter Seidel, Bernt Schiele, and Christian Theobalt. 2016. EgoCap: Egocentric Marker-Less Motion Capture with Two Fisheye Cameras. ACM Trans. Graph. 35, 6, Article 162 (Nov. 2016), 11 pages. https://doi.org/10.1145/2980179.2980235Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Thiago Braga Rodrigues, Ciarán Ó Catháin, Declan Devine, Kieran Moran, Noel E O’Connor, and Niall Murray. 2019. An Evaluation of a 3D Multimodal Marker-Less Motion Analysis System. In Proceedings of the 10th ACM Multimedia Systems Conference (Amherst, Massachusetts) (MMSys ’19). Association for Computing Machinery, New York, NY, USA, 213–221. https://doi.org/10.1145/3304109.3306236Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Grégory Rogez, Maryam Khademi, JS Supančič III, Jose Maria Martinez Montiel, and Deva Ramanan. 2014. 3D hand pose detection in egocentric RGB-D images. In European Conference on Computer Vision. Springer, 356–371. https://doi.org/10.1007/978-3-319-16178-5_25Google ScholarGoogle ScholarCross RefCross Ref
  57. Root Motion. 2020. FINAL IK - VRIK Solver Locomotion. Retrieved 2020 from http://www.root-motion.com/finalikdox/html/page16.htmlGoogle ScholarGoogle Scholar
  58. Root Motion. 2020. Root Motion. Retrieved 2020 from http://root-motion.com/Google ScholarGoogle Scholar
  59. Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I Am a Smartwatch and I Can Track My User’s Arm. In Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services (Singapore, Singapore) (MobiSys ’16). Association for Computing Machinery, New York, NY, USA, 85–96. https://doi.org/10.1145/2906388.2906407Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Takaaki Shiratori, Hyun Soo Park, Leonid Sigal, Yaser Sheikh, and Jessica K. Hodgins. 2011. Motion Capture from Body-Mounted Cameras. In ACM SIGGRAPH 2011 Papers. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/1964921.1964926Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Snap Inc.2020. Snapchat Lenses. Retrieved 2020 from https://lensstudio.snapchat.com/lenses/Google ScholarGoogle Scholar
  62. Ivan E. Sutherland. 1968. A Head-Mounted Three Dimensional Display. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I (San Francisco, California) (AFIPS ’68 (Fall, part I)). Association for Computing Machinery, New York, NY, USA, 757–764. https://doi.org/10.1145/1476589.1476686Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Jochen Tautges, Arno Zinke, Björn Krüger, Jan Baumann, Andreas Weber, Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd Eberhardt. 2011. Motion Reconstruction Using Sparse Accelerometer Data. ACM Trans. Graph. 30, 3, Article 18 (May 2011), 12 pages. https://doi.org/10.1145/1966394.1966397Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. 2019. xr-egopose: Egocentric 3d human pose from an hmd camera. In Proceedings of the IEEE International Conference on Computer Vision(ICCV ’19). IEEE, 7728–7738. https://doi.org/10.1109/ICCV.2019.00782Google ScholarGoogle ScholarCross RefCross Ref
  65. Unity Technologies. 2020. Unity. Retrieved 2020 from https://unity.com/Google ScholarGoogle Scholar
  66. Verhaert. 2020. Verhaert. Retrieved 2020 from https://verhaert.com/Google ScholarGoogle Scholar
  67. Vicon Motion Systems Ltd. 2020. Vicon. Retrieved 2020 from https://vicon.com/Google ScholarGoogle Scholar
  68. Vive. 2020. HTC VIVE. Retrieved 2020 from https://www.vive.com/Google ScholarGoogle Scholar
  69. Daniel Vlasic, Rolf Adelsberger, Giovanni Vannucci, John Barnwell, Markus Gross, Wojciech Matusik, and Jovan Popović. 2007. Practical Motion Capture in Everyday Surroundings. ACM Trans. Graph. 26, 3 (July 2007), 35–es. https://doi.org/10.1145/1276377.1276421Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Robert Xiao, Julia Schwarz, and Chris Harrison. 2015. Estimating 3D Finger Angle on Commodity Touchscreens. In Proceedings of the 2015 International Conference on Interactive Tabletops & Surfaces (Madeira, Portugal) (ITS ’15). Association for Computing Machinery, New York, NY, USA, 47–50. https://doi.org/10.1145/2817721.2817737Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Xsens. 2020. Motion Capture. Retrieved 2020 from https://www.xsens.com/motion-captureGoogle ScholarGoogle Scholar
  72. Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, and Christian Theobalt. 2019. Mo2Cap2: Real-time Mobile 3D Motion Capture with a Cap-mounted Fisheye Camera. IEEE Transactions on Visualization and Computer Graphics 25, 5(2019), 2093–2101. https://doi.org/10.1109/TVCG.2019.2898650Google ScholarGoogle ScholarCross RefCross Ref
  73. Yasuyoshi Yokokohji, Yuki Kitaoka, and Tsuneo Yoshikawa. 2005. Motion capture from demonstrator’s viewpoint and its application to robot teaching. Journal of Robotic Systems 22, 2 (2005), 87–97. https://doi.org/10.1002/rob.20050Google ScholarGoogle ScholarCross RefCross Ref
  74. Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong Tian, Hang Zhao, Antonio Torralba, and Dina Katabi. 2018. Through-wall human pose estimation using radio signals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR ’18). IEEE, 7356–7365. https://doi.org/10.1109/CVPR.2018.00768Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Pose-on-the-Go: Approximating User Pose with Smartphone Sensor Fusion and Inverse Kinematics
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format