skip to main content
10.1145/3388769.3407481acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
course

Computational time-resolved imaging, single-photon sensing, and non-line-of-sight imaging

Published:17 August 2020Publication History

ABSTRACT

Emerging detector technologies are capable of ultrafast capture of single photons, enabling imaging at the speed of light. Not only can these detectors be used for imaging at essentially trillion frame-per-second rates, but combining them with computational algorithms has given rise to unprecedented new imaging capabilities. Computational time-resolved imaging has enabled new techniques for 3D imaging, light transport analysis, imaging around corners or behind occluders, and imaging through scattering media such as fog, murky water, or human tissue. With applications in autonomous navigation, robotic vision, human-computer interaction, and more, this is an area of rapidly growing interest. In this course, we provide an introduction to computational time-resolved imaging and single photon sensing with a focus on hardware, applications, and algorithms. We describe various types of emerging single-photon detectors, including single-photon avalanche diodes and avalanche photodiodes, which are among the most popular time-resolved detectors. Physically accurate models for these detectors are described, including modeling parameters and noise statistics used in most computational algorithms. From the application side, we discuss the use of ultrafast active illumination for 3D imaging and transient imaging, and we describe the state of the art in non-line-of-sight imaging, which requires modelling and inverting the propagation and scattering of light from a visible surface to a hidden object and back. We describe time-resolved computational algorithms used in each of these applications and offer insights on potential future directions.

Skip Supplemental Material Section

Supplemental Material

3388769.3407481.mp4

Presentation video

mp4

1.4 GB

References

  1. N. Abramson. Light-in-flight recording by holography. Opt. Lett., 3(4):121--123, Oct 1978. 5, 6Google ScholarGoogle ScholarCross RefCross Ref
  2. B. Ahn, A. Dave, A. Veeraraghavan, I. Gkioulekas, and A. C. Sankaranarayanan. Convolutional approximations to the general non-line-of-sight imaging operator. In Proc. ICCV, 2019. 7Google ScholarGoogle ScholarCross RefCross Ref
  3. V. Arellano, D. Gutierrez, and A. Jarabo. Fast back-projection for non-line of sight reconstruction. Opt. Express, 25(10):11574--11583, 2017. 8Google ScholarGoogle ScholarCross RefCross Ref
  4. M. Buttafava, J. Zeman, A. Tosi, K. Eliceiri, and A. Velten. Non-line-of-sight imaging using a time-gated single photon avalanche diode. Opt. Express, 23(16):20997--21011, 2015. 7Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Chan, R. E. Warburton, G. Gariepy, J. Leach, and D. Faccio. Non-line-of-sight tracking of people at long range. Opt. Express, 25(9):10109--10117, 2017. 7Google ScholarGoogle ScholarCross RefCross Ref
  6. G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio. Detection and tracking of moving objects hidden from view. Nat. Photonics, 10, Jan 2016. 7Google ScholarGoogle ScholarCross RefCross Ref
  7. I. Gkioulekas, A. Levin, F. Durand, and T. Zickler. Micron-scale light transport decomposition using inter-ferometry. ACM Trans. Graph., 34(4):37:1--37:14, July 2015. 5, 6, 7Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar. Reconstruction of hidden 3d shapes using diffuse reflections. Opt. Express, 20(17):19096--19108, 2012. 8Google ScholarGoogle ScholarCross RefCross Ref
  9. F. Heide, S. Diamond, D. B. Lindell, and G. Wetzstein. Sub-picosecond photon-efficient 3d imaging using single-photon sensors. Sci. Rep., 8(1), 2018. 5, 7Google ScholarGoogle ScholarCross RefCross Ref
  10. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich. Low-budget transient imaging using photonic mixer devices. ACM Trans. Graph., 32(4):45:1--45:10, July 2013. 5, 6Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. Heide, M. O'Toole, K. Zang, D. B. Lindell, S. Diamond, and G. Wetzstein. Non-line-of-sight imaging with partial occluders and surface normals. ACM Trans. Graph., 38(3), 2019. 8Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin. Diffuse mirrors: 3d reconstruction from diffuse indirect illumination using inexpensive time-of-flight sensors. In Proc. CVPR, 2014. 7Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Iseringhausen and M. B. Hullin. Non-line-of-sight reconstruction using efficient transient rendering. ACM Trans. Graph., 39(1):1--14, 2020. 8Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar. Coded time of flight cameras: sparse deconvolution to address multipath interference and recover time profiles. ACM Trans. Graph., 32(6):167, 2013. 5Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar. Looking around the corner using transient imaging. In Proc. ICCV, 2009. 7Google ScholarGoogle ScholarCross RefCross Ref
  16. J. Klein, C. Peters, J. Martín, M. Laurenzis, and M. B. Hullin. Tracking objects outside the line of sight using 2d intensity images. Sci. Rep., 6:32491, 2016. 7Google ScholarGoogle ScholarCross RefCross Ref
  17. H. Kubo, S. Jayasuriya, T. Iwaguchi, T. Funatomi, Y. Mukaigawa, and S. G. Narasimhan. Programmable non-epipolar indirect light transport: Capture and analysis. IEEE Trans. Vis. Comput. Graph., 2019. 5Google ScholarGoogle ScholarCross RefCross Ref
  18. M. La Manna, F. Kine, E. Breitbach, J. Jackson, T. Sultan, and A. Velten. Error backprojection algorithms for non-line-of-sight imaging. IEEE Trans. Pattern Anal. Mach. Intell., 2018. 8Google ScholarGoogle Scholar
  19. D. B. Lindell, M. O'Toole, and G. Wetzstein. Single-photon 3d imaging with deep sensor fusion. ACM Trans. Graph., 37(4), 2018. 5Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. B. Lindell, M. O'Toole, and G. Wetzstein. Towards transient imaging at interactive rates with single-photon detectors. In Proc. ICCP, 2018. 5, 7Google ScholarGoogle ScholarCross RefCross Ref
  21. D. B. Lindell, G. Wetzstein, and M. O'Toole. Wave-based non-line-of-sight imaging using fast f-k migration. ACM Trans. Graph., 38(4):116, 2019. 5, 7, 8Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. X. Liu, S. Bauer, and A. Velten. Phasor field diffraction based reconstruction for fast non-line-of-sight imaging systems. Nat. Commun., 11(1):1--13, 2020. 8Google ScholarGoogle Scholar
  23. X. Liu, I. Guillén, M. La Manna, J. H. Nam, S. A. Reza, T. H. Le, A. Jarabo, D. Gutierrez, and A. Velten. Non-line-of-sight imaging using phasor-field virtual wave optics. Nature, 572(7771):620--623, 2019. 5Google ScholarGoogle ScholarCross RefCross Ref
  24. M. O'Toole, F. Heide, D. B. Lindell, K. Zang, S. Diamond, and G. Wetzstein. Reconstructing transient images from single-photon sensors. In Proc. CVPR, 2017. 5, 6, 7Google ScholarGoogle ScholarCross RefCross Ref
  25. M. O'Toole, D. B. Lindell, and G. Wetzstein. Real-time non-line-of-sight imaging. In ACM SIGGRAPH ETECH, 2018. 7Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. O'Toole, D. B. Lindell, and G. Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555(7696):338, 2018. 5, 7, 8Google ScholarGoogle ScholarCross RefCross Ref
  27. A. K. Pediredla, M. Buttafava, A. Tosi, O. Cossairt, and A. Veeraraghavan. Reconstructing rooms using photon echoes: A plane based model and reconstruction algorithm for looking around the corner. In Proc. ICCP, 2017. 7Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Satat, B. Heshmat, D. Raviv, and R. Raskar. All photons imaging through volumetric scattering. Sci. Rep., 6:33946, 2016. 5Google ScholarGoogle ScholarCross RefCross Ref
  29. G. Satat, M. Tancik, O. Gupta, B. Heshmat, and R. Raskar. Object classification through scattering media with deep learning on time resolved measurement. Opt. express, 25(15):17466--17479, 2017. 5Google ScholarGoogle ScholarCross RefCross Ref
  30. G. Satat, M. Tancik, and R. Raskar. Towards photography through realistic fog. In Proc. ICCP, 2018. 5Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Saunders, J. Murray-Bruce, and V. K. Goyal. Computational periscopy with an ordinary digital camera. Nature, 565(7740):472, 2019. 7Google ScholarGoogle ScholarCross RefCross Ref
  32. B. Schwarz. Mapping the world in 3d. Nat. Photonics, 4(7):429--430, 2010. 5Google ScholarGoogle ScholarCross RefCross Ref
  33. D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K. Goyal, F. N. C. Wong, and J. H. Shapiro. Photon-efficient imaging with a single-photon camera. Nat. Commun., 7(12046):1--7, 2016. 7Google ScholarGoogle Scholar
  34. O. Stavroudis. The optics of rays, wavefronts, and caustics, volume 38. Elsevier, 2012. 8Google ScholarGoogle Scholar
  35. S. Su, F. Heide, R. Swanson, J. Klein, C. Callenberg, M. Hullin, and W. Heidrich. Material classification using raw time-of-flight measurements. In Proc. CVPR, June 2016. 5Google ScholarGoogle ScholarCross RefCross Ref
  36. C.-Y. Tsai, K. N. Kutulakos, S. G. Narasimhan, and A. C. Sankaranarayanan. The geometry of first-returning photons for non-line-of-sight imaging. In Proc. CVPR, 2017. 5, 7Google ScholarGoogle ScholarCross RefCross Ref
  37. C.-Y. Tsai, A. Sankaranarayanan, and I. Gkioulekas. Beyond volumetric albedo---A surface optimization framework for non-line-of-sight imaging. In Proc. CVPR, 2019. 8Google ScholarGoogle ScholarCross RefCross Ref
  38. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 2012. 5, 6, 7, 8Google ScholarGoogle Scholar
  39. A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson, M. Bawendi, D. Gutierrez, and R. Raskar. Femto-photography: capturing and visualizing the propagation of light. ACM Trans. Graph., 32(4), 2013. 5Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. D. Wu, A. Velten, M. O'Toole, B. Masia, A. Agrawal, Q. Dai, and R. Raskar. Decomposing global light transport using time of flight imaging. Int. J. Comput. Vision, 107(2):123--138, Apr. 2014. 5Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. S. Xin, S. Nousias, K. N. Kutulakos, A. C. Sankaranarayanan, S. G. Narasimhan, and I. Gkioulekas. A theory of Fermat paths for non-line-of-sight shape reconstruction. In Proc. CVPR, 2019. 5, 8Google ScholarGoogle ScholarCross RefCross Ref
  42. F. Xu, G. Shulkind, C. Thrampoulidis, J. H. Shapiro, A. Torralba, F. N. Wong, and G. W. Wornell. Revealing hidden scenes by photon-efficient occlusion-based opportunistic active imaging. Opt. Express, 26(8):9945--9962, 2018. 7Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '20: ACM SIGGRAPH 2020 Courses
    August 2020
    3010 pages
    ISBN:9781450379724
    DOI:10.1145/3388769

    Copyright © 2020 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 17 August 2020

    Check for updates

    Qualifiers

    • course

    Acceptance Rates

    Overall Acceptance Rate1,822of8,601submissions,21%

    Upcoming Conference

    SIGGRAPH '24

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader