skip to main content
research-article

Tactile line drawings for improved shape understanding in blind and visually impaired users

Published:12 August 2020Publication History
Skip Editorial Notes Section

Editorial Notes

The authors have requested minor, non-substantive changes to the VoR and, in accordance with ACM policies, a Corrected VoR was published on December 7, 2020. For reference purposes the VoR may still be accessed via the Supplemental Material section on this page.

Skip Abstract Section

Abstract

Members of the blind and visually impaired community rely heavily on tactile illustrations - raised line graphics on paper that are felt by hand - to understand geometric ideas in school textbooks, depict a story in children's books, or conceptualize exhibits in museums. However, these illustrations often fail to achieve their goals, in large part due to the lack of understanding in how 3D shapes can be represented in 2D projections. This paper describes a new technique to design tactile illustrations considering the needs of blind individuals. Successful illustration design of 3D objects presupposes identification and combination of important information in topology and geometry. We propose a twofold approach to improve shape understanding. First, we introduce a part-based multi-projection rendering strategy to display geometric information of 3D shapes, making use of canonical viewpoints and removing reliance on traditional perspective projections. Second, curvature information is extracted from cross sections and embedded as textures in our illustrations.

Skip Supplemental Material Section

Supplemental Material

3386569.3392388.mp4

Presentation video

mp4

125.1 MB

References

  1. D.S. Lopes, M.T. Silva, and J.A. Ambrósio. 2013. Tangent vectors to a 3-D surface normal: A geometric tool to find orthogonal vectors based on the Householder transformation. Computer-Aided Design 45, 3 (2013), 683-694.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Maneesh Agrawala, Denis Zorin, and Tamara Munzner. 2000. Artistic Multiprojection Rendering. In Eurographics Workshop. Springer-Verlag, London, UK, UK, 125--136.Google ScholarGoogle Scholar
  3. Corinna Bauer, Lindsay Yazzolino, Gabriella Hirsch, Zaira Cattaneo, Tomaso Vecchi, and Lotfi Merabet. 2015. Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex 63 (02 2015), 104--117.Google ScholarGoogle Scholar
  4. Irving Biederman. 1987. Recognition-by-components: a theory of human image understanding. Psychological review 94, 2 (1987), 115--147.Google ScholarGoogle Scholar
  5. Randolph Blake and Robert Sekuler. 2006. Perception. McGraw-Hill, Boston, MA, USA.Google ScholarGoogle Scholar
  6. Diane Brauner. 2016. Refreshable Tactile Graphics Display: Making On-Screen Images Accessible! https://www.perkinselearning.org/technology/posts/refreshable-tactile-graphics-display-making-screen-images-accessible Accessed: 2019-08-17.Google ScholarGoogle Scholar
  7. Anke M. Brock, Philippe Truillet, Bernard Oriola, Delphine Picard, and Christophe Jouffrais. 2015. Interactivity Improves Usability of Geographic Maps for Visually Impaired People. Human-Computer Interaction 30, 2 (2015), 156--194.Google ScholarGoogle ScholarCross RefCross Ref
  8. John Brooke. 1996. SUS-A quick and dirty usability scale. 194 (1996), 189--194.Google ScholarGoogle Scholar
  9. John Brosz, Faramarz F. Samavati, M. Sheelagh T. Carpendale, and Mario Costa Sousa. 2007. Single Camera Flexible Projection (NPAR '07). ACM, New York, NY, USA, 33--42.Google ScholarGoogle Scholar
  10. Craig Brown and Amy Hurst. 2012. VizTouch: Automatically Generated Tactile Visualizations of Coordinate Spaces (TEI '12). ACM, New York, NY, USA, 131--138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Francis D. K. Ching and Juroszek Steven P. 2019. Design Drawing. WILEY, Indianapolis, IN 46256.Google ScholarGoogle Scholar
  12. P. Claudet, G. Chougui, and P. Richard. 2000--2008. The Typhlo and Tactus Guide for Children's Books with tactile illustrations.Google ScholarGoogle Scholar
  13. Forrester Cole, K. Sanik, D. DeCarlo, Adam Finkelstein, T. Funkhouser, S. Rusinkiewicz, and M. Singh. 2009. How Well Do Line Drawings Depict Shape? ACM Trans. Graph. 28, 3, Article 28 (2009), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Theresa Cooke, Frank Jäkel, Christian Wallraven, and Heinrich H. Bülthoff. 2007. Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45, 3 (2007), 484 -- 495. Advances in Multisensory Processes.Google ScholarGoogle ScholarCross RefCross Ref
  15. Menena Cottin, Rosana Faría, and Elisa Elisa Amado. 2008. The Black Book of Colors Hardcover. Groundwood Books, Toronto, ON M6R 2B7, USA.Google ScholarGoogle Scholar
  16. Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. 2003. Suggestive Contours for Conveying Shape. ACM Trans. Graph. 22, 3 (July 2003), 848--855.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Oliver Deussen, Jörg Hamel, Andreas Raab, Stefan Schlechtweg, and Thomas Strothotte. 1999. An Illustration Technique Using Hardware-based Intersections and Skeletons. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 175--182.Google ScholarGoogle Scholar
  18. J. Diepstraten, D. Weiskopf, and Thomas Ertl. 2003. Transparency in Interactive Technical Illustrations. Computer Graphics Forum 21 (05 2003), 317 -- 325.Google ScholarGoogle Scholar
  19. Goker Erdogan, Ilker Yildirim, and Robert A. Jacobs. 2014. Transfer of object shape knowledge across visual and haptic modalities. In In Proceedings of the 36th Annual Conference of the Cognitive Science Society.Google ScholarGoogle Scholar
  20. J Farley Norman, Hideko F Norman, Anna Marie Clayton, Joann Lianekhammy, and Gina Zielke. 2004. The visual and haptic perception of natural object shape. Vol. 66. Springer Berlin Heidelberg, Berlin, Heidelberg. 342--51 pages.Google ScholarGoogle Scholar
  21. Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François Sillion. 2004. Programmable Style for NPR Line Drawing. In Eurographics Symposium on Rendering. ACM Press.Google ScholarGoogle Scholar
  22. Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and François Sillion. 2008. Freestyle. http://freestyle.sourceforge.net/Google ScholarGoogle Scholar
  23. Giacomo Handjaras, Emiliano Ricciardi, Andrea Leo, Alessandro Lenci, Luca Cecchetti, Mirco Cosottini, Giovanna Marotta, and Pietro Pietrini. 2016. How concepts are encoded in the human brain: A modality independent, category-based cortical organization of semantic knowledge. 135 (04 2016).Google ScholarGoogle Scholar
  24. Lucia Hasty. 1999. Design Principles for tactile graphics. http://www.tactilegraphics.org/readability.htmlGoogle ScholarGoogle Scholar
  25. Morton Heller, Tara M Riddle, Erin K. Fulkerson, Lindsay Wemple, Anne D McClure Walk, Stephanie M Guthrie, Christine Kranz, and Patricia Klaus. 2009. The influence of viewpoint and object detail in blind people when matching pictures to complex objects. Perception 38 8 (2009), 1234--50.Google ScholarGoogle Scholar
  26. Sergio E. Hernandez and Kenneth E. Barner. 2000. Tactile Imaging Using Watershed-based Image Segmentation (Assets '00). ACM, New York, NY, USA, 26--33.Google ScholarGoogle Scholar
  27. Aaron Hertzmann and Denis Zorin. 2000. Illustrating Smooth Surfaces (SIGGRAPH '00). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 517--526.Google ScholarGoogle Scholar
  28. Ian Howard and Robert Allison. 2011. Drawing with divergent perspective, ancient and modern. Perception 40 (01 2011), 1017--33.Google ScholarGoogle Scholar
  29. Steven Hsiao. 2008. Central mechanisms of tactile shape perception. Current Opinion in Neurobiology 18, 4 (2008), 418 -- 424. Sensory systems.Google ScholarGoogle ScholarCross RefCross Ref
  30. Shoukat Islam, Swapnil Dipankar, Deborah Silver, and Min Chen. 2004. Spatial and Temporal Splitting of Scalar Fields in Volume Graphics. In Symposium on Volume Visualization and Graphics (VV '04). IEEE Computer Society, Washington, DC, USA, 87--94.Google ScholarGoogle Scholar
  31. Thomas W. James, G.Keith Humphrey, Joseph S. Gati, Philip Servos, Ravi S. Menon, and Melvyn A. Goodale. 2002. Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40, 10 (2002), 1706 -- 1714.Google ScholarGoogle ScholarCross RefCross Ref
  32. JMS. 2010. True Reverse Perspective. https://vimeo.com/12518619Google ScholarGoogle Scholar
  33. Tilke Judd, Frédo Durand, and Edward H. Adelson. 2007. Apparent ridges for line drawing. ACM Trans. Graph. 26, 3 (2007), 19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graph. 29, 4, Article 102 (July 2010), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Evangelos Kalogerakis, Derek Nowrouzezahrai, Simon Breslav, and Aaron Hertzmann. 2012. Learning Hatching for Pen-and-ink Illustration of Surfaces. ACM Trans. Graph. 31, 1, Article 1 (Feb. 2012), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. J. M. Kennedy. 1993. Drawing and the Blind: Pictures to Touch. Yale Univ. Press, New Haven, CT 06520-9040, USA.Google ScholarGoogle Scholar
  37. Jeeeun Kim, Hyunjoo Oh, and Tom Yeh. 2015. A Study to Empower Children to Design Movable Tactile Pictures for Children with Visual Impairments (TEI '15). ACM, New York, NY, USA, 703--708.Google ScholarGoogle Scholar
  38. Jeeeun Kim, Abigale Stangl, and Tom Yeh. 2014. Using LEGO to Model 3D Tactile Picture Books by Sighted Children for Blind Children (SUI '14). ACM, New York, NY, USA, 146--146.Google ScholarGoogle Scholar
  39. Jeeeun Kim and Tom Yeh. 2015. Toward 3D-Printed Movable Tactile Pictures for Children with Visual Impairments (CHI '15). ACM, New York, NY, USA, 2815--2824.Google ScholarGoogle Scholar
  40. Roberta L. Klatzky, Jack M. Loomis, Susan J. Lederman, Hiromi Wake, and Naofumi Fujita. 1993. Haptic identification of objects and their depictions. Perception & Psychophysics 54 (09 1993), 170--8.Google ScholarGoogle Scholar
  41. J. Krikke. 2000. Axonometry: a matter of perspective. IEEE Computer Graphics and Applications 20, 4 (July 2000), 7--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Martin Kurze. 1997. Rendering Drawings for Interactive Haptic Perception (CHI '97). ACM, New York, NY, USA, 423--430.Google ScholarGoogle Scholar
  43. Stephen Lakatos and Lawrence E. Marks. 1999. Haptic form perception: Relative salience of local and global features. Perception & Psychophysics 61, 5 (01 Jan 1999), 895--908.Google ScholarGoogle Scholar
  44. Manfred Lau, Kapil Dev, Weiqi Shi, Julie Dorsey, and Holly Rushmeier. 2016. Tactile Mesh Saliency. ACM Trans. Graph. 35, 4, Article 52 (July 2016), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S.J. Lederman and Roberta Klatzky. 2009. Haptic Perception: A Tutorial. Attention, Perception & Psychophysics 71 (10 2009), 1439--59.Google ScholarGoogle Scholar
  46. R Lenth. 2019. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4. 3.01.Google ScholarGoogle Scholar
  47. Vincent Levesque. 2005. Blindness, Technology and Haptics. Technical Report. Ecole de technologie supérieure.Google ScholarGoogle Scholar
  48. Jingyi Li, Son Kim, Joshua A. Miele, Maneesh Agrawala, and Sean Follmer. 2019. Editing Spatial Layouts Through Tactile Templates for People with Visual Impairments (CHI '19). ACM, New York, NY, USA, Article 206, 11 pages.Google ScholarGoogle Scholar
  49. Wilmot Li, Maneesh Agrawala, Brian Curless, and David Salesin. 2008. Automated Generation of Interactive 3D Exploded View Diagrams. ACM Trans. Graph. 27, 3, Article 101 (Aug. 2008), 7 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wilmot Li, Lincoln Ritter, Maneesh Agrawala, Brian Curless, and David Salesin. 2007. Interactive Cutaway Illustrations of Complex 3D Models. ACM Trans. Graph. 26, 3, Article 31 (July 2007).Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Hsueh-Ti Derek Liu and Alec Jacobson. 2019. Cubic Stylization. ACM Transactions on Graphics (2019).Google ScholarGoogle Scholar
  52. Marco Livesu, Marco Attene, Giuseppe Patane, and Michela Spagnuolo. 2017. Explicit cylindrical maps for general tubular shapes. Computer-Aided Design (05 2017).Google ScholarGoogle Scholar
  53. Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. 2003. Using Deformations for Browsing Volumetric Data. In VIS'03 (VIS '03). IEEE Computer Society, Washington, DC, USA, 53.Google ScholarGoogle Scholar
  54. N. McLennan, F. Hayden, T. Poppe, and W. Pierce. 1998. The good tactile graphic. Louisville, KY 40206-0085, USA.Google ScholarGoogle Scholar
  55. Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J. Mitra. 2009. Abstraction of Man-Made Shapes. ACM Transactions on Graphics 28, 5 (2009), #137, 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao Su. 2019. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding. In CVPR.Google ScholarGoogle Scholar
  57. David Moore. 2011. Disabled Students in Education: Technology, Transition, and Inclusivity: Technology, Transition, and Inclusivity. IGI Global, Hershey, PA 17033, USA. 49 -- 50 pages.Google ScholarGoogle Scholar
  58. A. Moringen, K. Krieger, R. Haschke, and H. Ritter. 2017. Haptic search for complex 3D shapes subject to geometric transformations or partial occlusion. In 2017 IEEE World Haptics Conference (WHC). 299--304.Google ScholarGoogle Scholar
  59. Braille Authority of North America. 2010. Guidelines and Standards for Tactile Graphics. Braille Authority of North America, Pittsburgh, PA, USA.Google ScholarGoogle Scholar
  60. Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. 2001. Real-time Hatching (SIGGRAPH '01). ACM, New York, NY, USA, 581.Google ScholarGoogle Scholar
  61. Paul Ré. 1981. On My Drawings and Paintings: An Extension of the System of Their Classification. Leonardo 14, 2 (1981), 106--113.Google ScholarGoogle Scholar
  62. Adrian Secord, Jingwan Lu, Adam Finkelstein, Manish Singh, and Andrew Nealen. 2011. Perceptual Models of Viewpoint Preference. ACM Trans. Graph. 30, 5, Article 109 (Oct. 2011), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Abigale Stangl, Jeeeun Kim, and Tom Yeh. 2014. 3D Printed Tactile Picture Books for Children with Visual Impairments: A Design Probe (IDC '14). ACM, New York, NY, USA, 321--324.Google ScholarGoogle Scholar
  64. Abigale J. Stangl. 2019. Tactile Media Consumption and Production for and by People Who Are Blind and Visually Impaired: A Design Research Investigation. Ph.D. Dissertation. University of Colorado at Boulder.Google ScholarGoogle Scholar
  65. Nisha Sudarsanam, Cindy Grimm, and Karan Singh. 2005. Interactive Manipulation Of Projections With a Curved Perspective. In Eurographics.Google ScholarGoogle Scholar
  66. Ryo Suzuki, Abigale Stangl, Mark D. Gross, and Tom Yeh. 2017. FluxMarker: Enhancing Tactile Graphics with Dynamic Tactile Markers (ASSETS '17). ACM, 190--199.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. 2012. Mean Curvature Skeletons. Comput. Graph. Forum 31, 5 (Aug. 2012), 1735--1744.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Andrea Tagliasacchi, Thomas Delame, Michela Spagnuolo, Nina Amenta, and Alexandru Telea. 2016. 3D Skeletons: A State-of-the-Art Report. Computer Graphics Forum 35 (05 2016).Google ScholarGoogle Scholar
  69. Markus Tatzgern, Denis Kalkofen, and Dieter Schmalstieg. 2010. Compact Explosion Diagrams (NPAR '10). ACM, New York, NY, USA, 17--26.Google ScholarGoogle Scholar
  70. Anne Theurel, Arnaud Witt, Philippe Claudet, Yvette Hatwell, and Edouard Gentaz. 2013. Tactile Picture Recognition by Early Blind Children: The Effect of Illustration Technique. Journal of experimental psychology. Applied 19 (09 2013), 233--40.Google ScholarGoogle Scholar
  71. Leanne Thompson and Edward Chronicle. 2006. Beyond visual conventions: Rethinking the design of tactile diagrams. British Journal of Visual Impairment 24 (05 2006), 76--82.Google ScholarGoogle Scholar
  72. Leanne J. Thompson, Edward P. Chronicle, and Alan F. Collins. 2006. Enhancing 2-D Tactile Picture Design from Knowledge of 3-D Haptic Object Recognition. European Psychologist - EUR PSYCHOL 11 (01 2006), 110--118.Google ScholarGoogle Scholar
  73. D. V. Vranic, D. Saupe, and J. Richter. 2001. Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In IEEE Workshop on Multimedia Signal Processing. 293--298.Google ScholarGoogle Scholar
  74. Benjamin Walsh. 2017. Texture, Buttons, Sound and Code: Modal Preference and the Formation of Expert Identities (FabLearn '17). ACM, New York, NY, USA, Article 19, 4 pages.Google ScholarGoogle Scholar
  75. T. P. Way and K. E. Barner. 1997. Automatic visual to tactile translation. IEEE Transactions on Rehabilitation Engineering 5, 1 (March 1997), 95--105.Google ScholarGoogle ScholarCross RefCross Ref
  76. Georges Winkenbach and David H. Salesin. 1996. Rendering Parametric Surfaces in Pen and Ink (SIGGRAPH '96). ACM, New York, NY, USA, 469--476.Google ScholarGoogle Scholar
  77. Kai Xu, Vladimir G. Kim, Qixing Huang, and Evangelos Kalogerakis. 2015. Data-Driven Shape Analysis and Processing. arXiv:cs.GR/1502.06686Google ScholarGoogle Scholar
  78. Jeffrey Yau, Sung Soo Kim, Pramodsingh Thakur, and Sliman Bensmaia. 2015. Feeling form: The neural basis of haptic shape perception. Journal of neurophysiology 115 (11 2015), jn.00598.2015.Google ScholarGoogle Scholar
  79. J. Yu and L. McMillan. 2004. A Framework for Multiperspective Rendering (EGSR'04). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 61--68.Google ScholarGoogle Scholar
  80. Johannes Zander, Tobias Isenberg, Stefan Schlechtweg, and Thomas Strothotte. 2004. High Quality Hatching. Computer Graphics Forum 23, 3 (2004), 421--430.Google ScholarGoogle ScholarCross RefCross Ref
  81. Yang Zhou, Kangxue Yin, Hui Huang, Hao Zhang, Minglun Gong, and Daniel Cohen-Or. 2015. Generalized Cylinder Decomposition. ACM Trans. Graph. 34, 6, Article 171 (Oct. 2015), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tactile line drawings for improved shape understanding in blind and visually impaired users

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 39, Issue 4
            August 2020
            1732 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3386569
            Issue’s Table of Contents

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 12 August 2020
            Published in tog Volume 39, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader