skip to main content
10.1145/3373718.3394773acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Descriptive complexity of real computation and probabilistic independence logic

Published:08 July 2020Publication History

ABSTRACT

We introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in nondeterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable disjoint union of closed sets in the usual topology of Rn. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants characterises a natural fragment of the complexity class ∃R (a class of problems polynomial time reducible to the true existential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic.

References

  1. Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. 2018. The art gallery problem is ∃R-complete. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 65--73. https://doi.org/10.1145/3188745.3188868Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Michael Benedikt, Martin Grohe, Leonid Libkin, and Luc Segoufin. 2003. Reachability and connectivity queries in constraint databases. J. Comput. System Sci. 66, 1 (2003), 169--206. https://doi.org/10.1016/S0022-0000(02)00034-X Special Issue on PODS 2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1997. Complexity and Real Computation. Springer-Verlag, Berlin, Heidelberg.Google ScholarGoogle Scholar
  4. Lenore Blum, Mike Shub, and Steve Smale. 1989. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.) 21, 1 (07 1989), 1--46. https://projecteuclid.org:443/euclid.bams/1183555121Google ScholarGoogle Scholar
  5. Peter Bürgisser and Felipe Cucker. 2006. Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets. J. Complexity 22, 2 (2006), 147--191. https://doi.org/10.1016/j.jco.2005.11.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. John F. Canny. 1988. Some Algebraic and Geometric Computations in PSPACE. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 460--467. https://doi.org/10.1145/62212.62257Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänänen. 2019. A logical approach to context-specific independence. Ann. Pure Appl. Logic 170, 9 (2019), 975--992. https: //doi.org/10.1016/j.apal.2019.04.004Google ScholarGoogle ScholarCross RefCross Ref
  8. Felipe Cucker and Klaus Meer. 1999. Logics Which Capture Complexity Classes Over The Reals. J. Symb. Log. 64, 1 (1999), 363--390. https: //doi.org/10.2307/2586770Google ScholarGoogle ScholarCross RefCross Ref
  9. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Approximation and dependence via multi-team semantics. Ann. Math. Artif. Intell. 83, 3-4 (2018), 297--320. https://doi.org/10.1007/s10472-017-9568-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. 2018. Probabilistic Team Semantics. In Foundations of Information and Knowledge Systems - 10th International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18, 2018, Proceedings. 186--206. https://doi.org/10.1007/978-3-319-90050-6_11Google ScholarGoogle Scholar
  11. Pietro Galliani. 2008. Game Values and Equilibria for Undetermined Sentences of Dependence Logic. (2008). MSc Thesis. ILLC Publications, MoL-2008-08.Google ScholarGoogle Scholar
  12. Pietro Galliani and Lauri Hella. 2013. Inclusion Logic and Fixed Point Logic. In Computer Science Logic 2013 (CSL 2013) (Leibniz International Proceedings in Informatics (LIPIcs)), Simona Ronchi Della Rocca (Ed.), Vol. 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 281--295. https://doi.org/10.4230/LIPIcs.CSL.2013.281Google ScholarGoogle Scholar
  13. Erich Grädel and Yuri Gurevich. 1998. Metafinite Model Theory. Inf. Comput. 140, 1 (1998), 26--81. https://doi.org/10.1006/inco.1997.2675Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Erich Grädel and Stephan Kreutzer. 1999. Descriptive Complexity Theory for Constraint Databases. In Computer Science Logic, 13th International Workshop, CSL '99, 8th Annual Conference of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings. 67--81. https://doi.org/10.1007/3-540-48168-0_6Google ScholarGoogle Scholar
  15. Erich Grädel and Klaus Meer. 1995. Descriptive complexity theory over the real numbers. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA. 315--324. https://doi.org/10.1145/225058.225151Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and Jonni Virtema. 2019. Facets of Distribution Identities in Probabilistic Team Semantics. In JELIA (Lecture Notes in Computer Science), Vol. 11468. Springer, 304--320.Google ScholarGoogle Scholar
  17. Miika Hannula and Juha Kontinen. 2016. A finite axiomatization of conditional independence and inclusion dependencies. Inf. Comput. 249 (2016), 121--137. https://doi.org/10.1016/j.ic.2016.04.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Uffe Flarup Hansen and Klaus Meer. 2006. Two logical hierarchies of optimization problems over the real numbers. Math. Log. Q. 52, 1 (2006), 37--50. https://doi.org/10.1002/malq.200510021Google ScholarGoogle ScholarCross RefCross Ref
  19. Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. 2017. A Logic for Arguing About Probabilities in Measure Teams. Arch. Math. Logic 56, 5-6 (2017), 475--489. https://doi.org/10.1007/s00153-017-0535-xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  20. Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. 1995. Constraint Query Languages. J. Comput. Syst. Sci. 51, 1 (1995), 26--52. https://doi.org/10.1006/jcss.1995.1051Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pascal Koiran. 1994. Computing over the Reals with Addition and Order. Theor. Comput. Sci. 133, 1 (1994), 35--47. https://doi.org/10.1016/0304-3975(93)00063-BGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  22. Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. 2018. Team Semantics for the Specification and Verification of Hyperproperties. In MFCS (LIPIcs), Vol. 117. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 10:1--10:16.Google ScholarGoogle Scholar
  23. Stephan Kreutzer. 2000. Fixed-Point Query Languages for Linear Constraint Databases. In Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, May 15-17, 2000, Dallas, Texas, USA. 116--125. https://doi.org/10.1145/335168.335214Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Klaus Meer. 2000. Counting problems over the reals. Theor. Comput. Sci. 242, 1-2 (2000), 41--58. https://doi.org/10.1016/S0304-3975(98)00190-XGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  25. Marcus Schaefer. 2009. Complexity of Some Geometric and Topological Problems. In Graph Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers. 334--344. https://doi.org/10.1007/978-3-642-11805-0_32Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marcus Schaefer and Daniel Stefankovic. 2017. Fixed Points, Nash Equilibria, and the Existential Theory of the Reals. Theory Comput. Syst. 60, 2 (2017), 172--193. https://doi.org/10.1007/s00224-015-9662-0Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Jouko Väänänen. 2007. Dependence Logic. Cambridge University Press.Google ScholarGoogle Scholar
  28. S. Willard. 2004. General Topology. Dover Publications. https://books.google.co.jp/books?id=-o8xJQ7Ag2cCGoogle ScholarGoogle Scholar

Index Terms

  1. Descriptive complexity of real computation and probabilistic independence logic

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
            July 2020
            986 pages
            ISBN:9781450371049
            DOI:10.1145/3373718

            Copyright © 2020 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 8 July 2020

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            LICS '20 Paper Acceptance Rate69of174submissions,40%Overall Acceptance Rate143of386submissions,37%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader