skip to main content
10.1145/3340555.3353741acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesicmi-mlmiConference Proceedingsconference-collections
research-article
Open Access

Comparing Pedestrian Navigation Methods in Virtual Reality and Real Life

Authors Info & Claims
Published:14 October 2019Publication History

ABSTRACT

Mobile navigation apps are among the most used mobile applications and are often used as a baseline to evaluate new mobile navigation technologies in field studies. As field studies often introduce external factors that are hard to control for, we investigate how pedestrian navigation methods can be evaluated in virtual reality (VR). We present a study comparing navigation methods in real life (RL) and VR to evaluate if VR environments are a viable alternative to RL environments when it comes to testing these. In a series of studies, participants navigated a real and a virtual environment using a paper map and a navigation app on a smartphone. We measured the differences in navigation performance, task load and spatial knowledge acquisition between RL and VR. From these we formulate guidelines for the improvement of pedestrian navigation systems in VR like improved legibility for small screen devices. We furthermore discuss appropriate low-cost and low-space VR-locomotion techniques and discuss more controllable locomotion techniques.

References

  1. Ilhan Aslan, Maximilian Schwalm, Jörg Baus, Antonio Krüger, and Tim Schwartz. 2006. Acquisition of Spatial Knowledge in Location Aware Mobile Pedestrian Navigation Systems. In Proceedings of the 8th Conference on Human-computer Interaction with Mobile Devices and Services(MobileHCI ’06). ACM, New York, NY, USA, 105–108. https://doi.org/10.1145/1152215.1152237Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Willem Bles, Jelte E Bos, Bernd de Graaf, Eric Groen, and Alexander H Wertheim. 1998. Motion sickness: only one provocative conflict?Brain Research Bulletin 47, 5 (1998), 481 – 487. https://doi.org/10.1016/S0361-9230(98)00115-4Google ScholarGoogle Scholar
  3. James P. Bliss, Philip D. Tidwell, and Michael A. Guest. 1997. The Effectiveness of Virtual Reality for Administering Spatial Navigation Training to Firefighters. Presence: Teleoper. Virtual Environ. 6, 1 (Feb. 1997), 73–86. https://doi.org/10.1162/pres.1997.6.1.73Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Doug A. Bowman, Chris North, Jian Chen, Nicholas F. Polys, Pardha S. Pyla, and Umur Yilmaz. 2003. Information-rich Virtual Environments: Theory, Tools, and Research Agenda. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology(VRST ’03). ACM, New York, NY, USA, 81–90. https://doi.org/10.1145/1008653.1008669Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Stefano Burigat and Luca Chittaro. 2011. Pedestrian Navigation with Degraded GPS Signal: Investigating the Effects of Visualizing Position Uncertainty. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services(MobileHCI ’11). ACM, New York, NY, USA, 221–230. https://doi.org/10.1145/2037373.2037407Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Daniel Cliburn, Tess Winlock, Stacy Rilea, and Matt Van Donsel. 2007. Dynamic Landmark Placement As a Navigation Aid in Virtual Worlds. In Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology(VRST ’07). ACM, New York, NY, USA, 211–214. https://doi.org/10.1145/1315184.1315225Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. L. A. Cushman, K. Stein, and C. J. Duffy. 2008. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 71, 12 (Sep 2008), 888–895.Google ScholarGoogle ScholarCross RefCross Ref
  8. Alexandru Dancu, Mickaël Fourgeaud, Mohammad Obaid, Morten Fjeld, and Niklas Elmqvist. 2015. Map Navigation Using a Wearable Mid-air Display. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’15). ACM, New York, NY, USA, 71–76. https://doi.org/10.1145/2785830.2785876Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Rudolph P. Darken, William R. Cockayne, and David Carmein. 1997. The Omni-directional Treadmill: A Locomotion Device for Virtual Worlds. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology(UIST ’97). ACM, New York, NY, USA, 213–221. https://doi.org/10.1145/263407.263550Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Shuchisnigdha Deb, Daniel W. Carruth, Richard Sween, Lesley Strawderman, and Teena M. Garrison. 2017. Efficacy of virtual reality in pedestrian safety research. Applied Ergonomics 65(2017), 449 – 460. https://doi.org/10.1016/j.apergo.2017.03.007Google ScholarGoogle ScholarCross RefCross Ref
  11. Ioannis Delikostidis, Holger Fritze, Thore Fechner, and Christian Kray. 2015. Bridging the Gap Between Field- and Lab-Based User Studies for Location-Based Services. Springer International Publishing, Cham, 257–271. https://doi.org/10.1007/978-3-319-11879-6_18Google ScholarGoogle Scholar
  12. Martin J. Farrel, Paul Arnold, Steve Pettifer, Jessica Adams, Tom Graham, and Michael MacManamon. 2003. Transfer of Route Learning From Virtual to Real Environments.Journal of Experimental Psychology: Applied 9, 4 (2003), 219–227. https://doi.org/10.1037/1076-898X.9.4.219 arXiv:https://doi.org/10.1037/1076-898X.9.4.219PMID: 14664673.Google ScholarGoogle Scholar
  13. Ilja Feldstein, André Dietrich, Sasha Milinkovic, and Klaus Bengler. 2016. A Pedestrian Simulator for Urban Crossing Scenarios. IFAC-PapersOnLine 49, 19 (2016), 239 – 244. https://doi.org/10.1016/j.ifacol.2016.10.531 13th IFAC Symposium on Analysis, Design, and Evaluation ofHuman-Machine Systems HMS 2016.Google ScholarGoogle ScholarCross RefCross Ref
  14. Dan Frommer. 2017. These are the 10 most popular mobile apps in America. Blog. Retrieved August 28, 2017 from http://www.recode.net/2017/8/24/16197218/top-10-mobile-apps-2017-comscore-chart-facebook-google.Google ScholarGoogle Scholar
  15. Simpson Gordon, Johnston Lucy, and Richardson Michael. 2003. An investigation of road crossing in a virtual environment. Accident Analysis & Prevention 35, 5 (2003), 787 – 796. https://doi.org/10.1016/S0001-4575(02)00081-7Google ScholarGoogle ScholarCross RefCross Ref
  16. Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Human Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychology, Vol. 52. North-Holland, 139 – 183. https://doi.org/10.1016/S0166-4115(08)62386-9Google ScholarGoogle ScholarCross RefCross Ref
  17. Jesper Kjeldskov, Mikael B. Skov, Benedikte S. Als, and Rune T. Høegh. 2004. Is It Worth the Hassle? Exploring the Added Value of Evaluating the Usability of Context-Aware Mobile Systems in the Field. In Mobile Human-Computer Interaction - MobileHCI 2004, Stephen Brewster and Mark Dunlop (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg.Google ScholarGoogle ScholarCross RefCross Ref
  18. Thorsten Kluss, William E. Marsh, Christoph Zetzsche, and Kerstin Schill. 2015. Representation of impossible worlds in the cognitive map. Cognitive Processing 16, 1 (01 Sep 2015), 271–276. https://doi.org/10.1007/s10339-015-0705-xGoogle ScholarGoogle Scholar
  19. Brigitte Lapeyre, Sylvain Hourlier, Xavier Servantie, Bernard N’Kaoua, and Hélène Sauzéon. 2011. Using the Landmark-Route-Survey Framework to Evaluate Spatial Knowledge Obtained From Synthetic Vision Systems. Human Factors 53, 6 (2011), 647–661. https://doi.org/10.1177/0018720811421171Google ScholarGoogle ScholarCross RefCross Ref
  20. Christian Lehsing, Ilja Feldstein, André Dietrich, and Klaus Bengler. 2016. Pedestrian Simulator for Traffic Research - State of the Art and Future of a Motion Lab. (06 2016).Google ScholarGoogle Scholar
  21. Luigi Maffei, Massimiliano Masullo, Francesco Sorrentino, and Maria Gabriele. 2014. Preliminary studies on the relation between the audio-visual cues’ perception and the approaching speed of electric vehicles. 20 (04 2014), 1–9.Google ScholarGoogle Scholar
  22. Ryan P. McMahan. 2011. Exploring the Effects of Higher-Fidelity Display and Interaction for Virtual Reality Games. PhD dissertation. Virginia Tech.Google ScholarGoogle Scholar
  23. Ryan P. McMahan, Chengyuan Lai, and Swaroop K. Pal. 2016. Interaction Fidelity: The Uncanny Valley of Virtual Reality Interactions. In Virtual, Augmented and Mixed Reality - 8th International Conference, VAMR 2016, Held as Part of HCI International 2016, Toronto, Canada, July 17-22, 2016. Proceedings. 59–70. https://doi.org/10.1007/978-3-319-39907-2_6Google ScholarGoogle Scholar
  24. Martin Pielot and Susanne Boll. 2010. Tactile Wayfinder: Comparison of Tactile Waypoint Navigation with Commercial Pedestrian Navigation Systems. In Pervasive Computing, Patrik Floréen, Antonio Krüger, and Mirjana Spasojevic (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 76–93.Google ScholarGoogle Scholar
  25. Daniel R Montello and Corina Sas. 2006. Human Factors of Wayfinding in Navigation. International Encyclopedia of Ergonomics and Human Factors (03 2006). https://doi.org/10.1201/9780849375477.ch394Google ScholarGoogle ScholarCross RefCross Ref
  26. Anthony E. Richardson, Daniel R. Montello, and Mary Hegarty. 1999. Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition 27, 4 (01 Jul 1999), 741–750. https://doi.org/10.3758/BF03211566Google ScholarGoogle Scholar
  27. Maximilian Schirmer, Johannes Hartmann, Sven Bertel, and Florian Echtler. 2015. Shoe Me the Way: A Shoe-Based Tactile Interface for Eyes-Free Urban Navigation. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’15). ACM, New York, NY, USA, 327–336. https://doi.org/10.1145/2785830.2785832Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Stefan Schneegass, Florian Alt, Jürgen Scheible, Albrecht Schmidt, and Haifeng Su. 2014. Midair Displays: Exploring the Concept of Free-floating Public Displays. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems(CHI EA ’14). ACM, New York, NY, USA, 2035–2040. https://doi.org/10.1145/2559206.2581190Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Evan A. Suma, Mahdi Azmandian, Timofey Grechkin, Thai Phan, and Mark Bolas. 2015. Making Small Spaces Feel Large: Infinite Walking in Virtual Reality. In ACM SIGGRAPH 2015 Emerging Technologies(SIGGRAPH ’15). ACM, New York, NY, USA, Article 16, 1 pages. https://doi.org/10.1145/2782782.2792496Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Delphine Szymczak, Kirsten Rassmus-Gröhn, Charlotte Magnusson, and Per-Olof Hedvall. 2012. A Real-world Study of an Audio-tactile Tourist Guide. In Proceedings of the 14th International Conference on Human-computer Interaction with Mobile Devices and Services(MobileHCI ’12). ACM, New York, NY, USA, 335–344. https://doi.org/10.1145/2371574.2371627Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Grégory Wallet, Hélène Sauzéon, Jérôme Rodrigues, and Bernard N’Kaoua. 2008. Use of Virtual Reality for Spatial Knowledge Transfer: Effects of Passive/Active Exploration Mode in Simple and Complex Routes for Three Different Recall Tasks. In Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology(VRST ’08). ACM, New York, NY, USA, 175–178. https://doi.org/10.1145/1450579.1450616Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Benjamin Walther-Franks, Dirk Wenig, Jan Smeddinck, and Rainer Malaka. 2013. Suspended Walking: A Physical Locomotion Interface for Virtual Reality. In Entertainment Computing – ICEC 2013, Junia C. Anacleto, Esteban W. G. Clua, Flavio S. Correa da Silva, Sidney Fels, and Hyun S. Yang (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 185–188.Google ScholarGoogle Scholar
  33. Dirk Wenig, Johannes Schöning, Brent Hecht, and Rainer Malaka. 2015. StripeMaps: Improving Map-based Pedestrian Navigation for Smartwatches. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services(MobileHCI ’15). ACM, New York, NY, USA, 52–62. https://doi.org/10.1145/2785830.2785862Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICMI '19: 2019 International Conference on Multimodal Interaction
    October 2019
    601 pages
    ISBN:9781450368605
    DOI:10.1145/3340555

    Copyright © 2019 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 October 2019

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate453of1,080submissions,42%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format