skip to main content
10.1145/3293353.3293414acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

Color Image Super Resolution in Real Noise

Published:03 May 2020Publication History

ABSTRACT

In practice, images can contain different amounts of noise for different color channels, which is not acknowledged by existing super-resolution approaches. In this paper, we propose to super-resolve noisy color images by considering the color channels jointly. Noise statistics are blindly estimated from the input low-resolution image and are used to assign different weights to different color channels in the data cost. Implicit low-rank structure of visual data is enforced via nuclear norm minimization in association with adaptive weights, which is added as a regularization term to the cost. Additionally, multi-scale details of the image are added to the model through another regularization term that involves projection onto PCA basis, which is constructed using similar patches extracted across different scales of the input image. The results demonstrate the super-resolving capability of the approach in real scenarios.

References

  1. Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. 2018. A High-Quality Denoising Dataset for Smartphone Cameras. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1692--1700.Google ScholarGoogle Scholar
  2. M. Aharon, M. Elad, and A. Bruckstein. Nov. 2006. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 54, 11 (Nov. 2006), 4311--4322.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trends Mach. Learn. 3, 1 (Jan. 2011), 1--122. https://doi.org/10.1561/2200000016Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Chen, F. Zhu, and P. A. Heng. 2015. An Efficient Statistical Method for Image Noise Level Estimation. In IEEE International Conference on Computer Vision (ICCV). 477--485. https://doi.org/10.1109/ICCV.2015.62Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. 2007. Color Image Denoising via Sparse 3D Collaborative Filtering with Grouping Constraint in Luminance-Chrominance Space. In IEEE International Conference on Image Processing (ICIP), Vol. 1. I-313--I-316. https://doi.org/10.1109/ICIP.2007.4378954Google ScholarGoogle Scholar
  6. Chao Dong, ChenChange Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision -ECCV 2014. Lecture Notes in Computer Science, Vol. 8692. Springer International Publishing, 184--199. https://doi.org/10.1007/978-3-319-10593-2_13Google ScholarGoogle ScholarCross RefCross Ref
  7. Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the Super-Resolution Convolutional Neural Network. In Computer Vision - ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 391--407.Google ScholarGoogle Scholar
  8. W. Dong, L. Zhang, G. Shi, and X. Li. 2013. Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Transactions on Image Processing 22, 4 (April 2013), 1620--1630. https://doi.org/10.1109/TIP.2012.2235847Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. 2011. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Transactions on Image Processing 20, 7 (Jul. 2011), 1838--1857. https://doi.org/10.1109/TIP.2011.2108306Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. W.T. Freeman, T.R. Jones, and E.C. Pasztor. 2002. Example-based super-resolution. IEEE, Computer Graphics and Applications 22, 2 (mar/apr 2002), 56--65. https://doi.org/10.1109/38.988747Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. D. Glasner, S. Bagon, and M. Irani. 2009. Super-resolution from a single image. In IEEE International Conference on Computer Vision (ICCV). 349--356. https://doi.org/10.1109/ICCV.2009.5459271Google ScholarGoogle Scholar
  12. Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang. 2017. Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. International Journal of Computer Vision 121, 2 (01 Jan 2017), 183--208. https://doi.org/10.1007/s11263-016-0930-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770--778. https://doi.org/10.1109/CVPR.2016.90Google ScholarGoogle Scholar
  14. J. B. Huang, A. Singh, and N. Ahuja. 2015. Single image super-resolution from transformed self-exemplars. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5197--5206. https://doi.org/10.1109/CVPR.2015.7299156Google ScholarGoogle ScholarCross RefCross Ref
  15. G. Jeon and E. Dubois. 2013. Demosaicking of Noisy Bayer-Sampled Color Images With Least-Squares Luma-Chroma Demultiplexing and Noise Level Estimation. IEEE Transactions on Image Processing 22, 1 (Jan 2013), 146--156. https://doi.org/10.1109/TIP.2012.2214041Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Atsunori Kanemura, Shin ichi Maeda, and Shin Ishii. 2009. Superresolution with compound Markov random fields via the variational {EM} algorithm. Neural Networks 22, 7 (2009), 1025--1034. https://doi.org/10.1016/j.neunet.2008.12.005Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hakki Can Karaimer and Michael S. Brown. 2016. A Software Platform for Manipulating the Camera Imaging Pipeline. In Computer Vision - ECCV, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International Publishing, Cham, 429--444.Google ScholarGoogle Scholar
  18. J. Kim, J. K. Lee, and K. M. Lee. 2016. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1646--1654. https://doi.org/10.1109/CVPR.2016.182Google ScholarGoogle Scholar
  19. J. Kim, J. K. Lee, and K. M. Lee. 2016. Deeply-Recursive Convolutional Network for Image Super-Resolution. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1637--1645. https://doi.org/10.1109/CVPR.2016.181Google ScholarGoogle Scholar
  20. Marc Lebrun, Miguel Colom, and Jean-Michel Morel. 2015. The Noise Clinic: a Blind Image Denoising Algorithm. Image Processing On Line 5 (2015), 1--54. https://doi.org/10.5201/ipol.2015.125Google ScholarGoogle ScholarCross RefCross Ref
  21. C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. 2017. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 105--114. https://doi.org/10.1109/CVPR.2017.19Google ScholarGoogle Scholar
  22. B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. 2017. Enhanced Deep Residual Networks for Single Image Super-Resolution. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1132--1140. https://doi.org/10.1109/CVPRW.2017.151Google ScholarGoogle Scholar
  23. C. Liu, R. Szeliski, S. Bing Kang, C. L. Zitnick, and W. T. Freeman. 2008. Automatic Estimation and Removal of Noise from a Single Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (Feb 2008), 299--314. https://doi.org/10.1109/TPAMI.2007.1176Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. 2009. Non-local sparse models for image restoration. In IEEE 12th International Conference on Computer Vision. 2272--2279. https://doi.org/10.1109/ICCV.2009.5459452Google ScholarGoogle Scholar
  25. S. Mandal, A. Bhavsar, and A.K. Sao. 2014. Super-resolving a Single Intensity/Range Image via Non-local Means and Sparse Representation. In Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), 2014. 1--8. https://doi.org/10.1145/2683483.2683541Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. Mandal, A. Bhavsar, and A. K. Sao. 2017. Depth Map Restoration From Undersampled Data. IEEE Transactions on Image Processing 26, 1 (Jan 2017), 119--134. https://doi.org/10.1109/TIP.2016.2621410Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Srimanta Mandal, Arnav Bhavsar, and Anil Kumar Sao. 2017. Noise adaptive super-resolution from single image via non-local mean and sparse representation. Signal Processing 132 (2017), 134--149. https://doi.org/10.1016/j.sigpro.2016.09.017Google ScholarGoogle ScholarCross RefCross Ref
  28. Srimanta Mandal and A. N. Rajagopalan. 2018. Single Noisy Image Super Resolution by Minimizing Nuclear Norm in Virtual Sparse Domain. In Computer Vision, Pattern Recognition, Image Processing, and Graphics, Renu Rameshan, Chetan Arora, and Sumantra Dutta Roy (Eds.). Springer Singapore, Singapore, 163--176.Google ScholarGoogle Scholar
  29. Srimanta Mandal and Anil Kumar Sao. 2016. Employing structural and statistical information to learn dictionary(s) for single image super-resolution in sparse domain. Signal Processing: Image Communication 48 (2016), 63--80. https://doi.org/10.1016/j.image.2016.08.006Google ScholarGoogle ScholarCross RefCross Ref
  30. Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. 2016. Image Restoration Using Very Deep Convolutional Encoder-decoder Networks with Symmetric Skip Connections. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS'16). Curran Associates Inc., USA, 2810--2818. http://dl.acm.org/citation.cfm?id=3157382.3157412Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Antonio Marquina and Stanley J. Osher. 2008. Image Super-Resolution by TV-Regularization and Bregman Iteration. Journal of Scientific Computing 37 (2008), 367--382. Issue 3. https://doi.org/10.1007/s10915-008-9214-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Nam, Y. Hwang, Y. Matsushita, and S. J. Kim. 2016. A Holistic Approach to Cross-Channel Image Noise Modeling and Its Application to Image Denoising. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1683--1691. https://doi.org/10.1109/CVPR.2016.186Google ScholarGoogle Scholar
  33. Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. 2003. Super-resolution image reconstruction: a technical overview. IEEE, Signal Processing Magazine 20, 3 (may 2003), 21--36. https://doi.org/10.1109/MSP.2003.1203207Google ScholarGoogle Scholar
  34. T. Peleg and M. Elad. 2014. A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution. IEEE Transactions on Image Processing 23, 6 (June 2014), 2569--2582. https://doi.org/10.1109/TIP.2014.2305844Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. T. Plötz and S. Roth. 2017. Benchmarking Denoising Algorithms with Real Photographs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2750--2759. https://doi.org/10.1109/CVPR.2017.294Google ScholarGoogle Scholar
  36. R. Rubinstein, A.M. Bruckstein, and M. Elad. 2010. Dictionaries for Sparse Representation Modeling. Proc. IEEE 98, 6 (june 2010), 1045--1057. https://doi.org/10.1109/JPROC.2010.2040551Google ScholarGoogle ScholarCross RefCross Ref
  37. W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang. 2016. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1874--1883. https://doi.org/10.1109/CVPR.2016.207Google ScholarGoogle Scholar
  38. Assaf Shocher, Nadav Cohen, and Michal Irani. 2018. "Zero-Shot" Super-Resolution Using Deep Internal Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3118--3126.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Singh, F. Porikli, and N. Ahuja. 2014. Super-resolving Noisy Images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2846--2853. https://doi.org/10.1109/CVPR.2014.364Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Henry Stark and Peyma Oskoui. 1989. High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6, 11 (Nov. 1989), 1715--1726.Google ScholarGoogle ScholarCross RefCross Ref
  41. Radu Timofte, Vincent De Smet, and Luc Van Gool. 2015. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In Computer Vision - ACCV 2014. Lecture Notes in Computer Science, Vol. 9006. Springer International Publishing, 111--126. https://doi.org/10.1007/978-3-319-16817-3_8Google ScholarGoogle Scholar
  42. S. Vishnukumar, Madhu S. Nair, and M. Wilscy. 2014. Edge preserving single image super-resolution with improved visual quality. Signal Processing 105, 0 (2014), 283--297. https://doi.org/10.1016/j.sigpro.2014.05.033Google ScholarGoogle ScholarCross RefCross Ref
  43. J. Xu, L. Zhang, D. Zhang, and X. Feng. 2017. Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising. In IEEE International Conference on Computer Vision (ICCV). 1105--1113. https://doi.org/10.1109/ICCV.2017.125Google ScholarGoogle Scholar
  44. Chih-Yuan Yang, Jia-Bin Huang, and Ming-Hsuan Yang. 2011. Exploiting Self-similarities for Single Frame Super-Resolution. In Computer Vision - ACCV 2010, Ron Kimmel, Reinhard Klette, and Akihiro Sugimoto (Eds.). Lecture Notes in Computer Science, Vol. 6494. Springer Berlin Heidelberg, 497--510. https://doi.org/10.1007/978-3-642-19318-7_39Google ScholarGoogle Scholar
  45. Jianchao Yang, J. Wright, T. Huang, and Yi Ma. Jun. 2008. Image super-resolution as sparse representation of raw image patches. In IEEE Conference on Computer Vision and Pattern Recognition. 1--8. https://doi.org/10.1109/CVPR.2008.4587647Google ScholarGoogle Scholar
  46. Jianchao Yang, J. Wright, T.S. Huang, and Yi Ma. Nov. 2010. Image Super-Resolution Via Sparse Representation. IEEE Transactions on Image Processing 19, 11 (Nov. 2010), 2861--2873. https://doi.org/10.1109/TIP.2010.2050625Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Roman Zeyde, Michael Elad, and Matan Protter. 2012. On Single Image Scale-Up Using Sparse-Representations. In Curves and Surfaces. Vol. 6920. Springer, 711--730. https://doi.org/10.1007/978-3-642-27413-8_47Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xin Zhang, Edmund Y. Lam, EdX. Wu, and Kenneth K.Y. Wong. 2008. Application of Tikhonov Regularization to Super-Resolution Reconstruction of Brain MRI Images. In Medical Imaging and Informatics, Xiaohong Gao, Henning Müller, MartinJ. Loomes, Richard Comley, and Shuqian Luo (Eds.). Lecture Notes in Computer Science, Vol. 4987. Springer Berlin Heidelberg, 51--56. https://doi.org/10.1007/978-3-540-79490-5_8Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Color Image Super Resolution in Real Noise

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICVGIP '18: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing
          December 2018
          659 pages
          ISBN:9781450366151
          DOI:10.1145/3293353

          Copyright © 2018 ACM

          © 2018 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 May 2020

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          Overall Acceptance Rate95of286submissions,33%
        • Article Metrics

          • Downloads (Last 12 months)12
          • Downloads (Last 6 weeks)3

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader