skip to main content
10.1145/3208976.3209017acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations

Authors Info & Claims
Published:11 July 2018Publication History

ABSTRACT

Sparse polynomial interpolation, sparse linear system solving or modular rational reconstruction are fundamental problems in Computer Algebra. They come down to computing linear recurrence relations of a sequence with the Berlekamp--Massey algorithm. Likewise, sparse multivariate polynomial interpolation and multidimensional cyclic code decoding require guessing linear recurrence relations of a multivariate sequence. Several algorithms solve this problem. The so-called Berlekamp--Massey--Sakata algorithm (1988) uses polynomial additions and shifts by a monomial. The Scalar-FGLM algorithm (2015) relies on linear algebra operations on a multi-Hankel matrix, a multivariate generalization of a Hankel matrix. The Artinian Gorenstein border basis algorithm (2017) uses a Gram-Schmidt process. We propose a new algorithm for computing the Gröbner basis of the ideal of relations of a sequence based solely on multivariate polynomial arithmetic. This algorithm allows us to both revisit the Berlekamp--Massey--Sakata algorithm through the use of polynomial divisions and to completely revise the Scalar-FGLM algorithm without linear algebra operations. A key observation in the design of this algorithm is to work on the mirror of the truncated generating series allowing us to use polynomial arithmetic modulo a monomial ideal. It appears to have some similarities with Padé approximants of this mirror polynomial. Finally, we give a partial solution to the transformation of this algorithm into an adaptive one.

References

  1. B. Beckermann and G. Labahn. 1994. A Uniform Approach for the Fast Computation of Matrix-Type Pade Approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994), 804--823. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. E. Berlekamp. 1968. Nonbinary BCH decoding. IEEE Trans. Inform. Theory 14, 2 (1968), 242--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Berthomieu, B. Boyer, and J.-Ch. Faugère. 2015. Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC '15). ACM, New York, NY, USA, 61--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Berthomieu, B. Boyer, and J.-Ch. Faugère. 2017. Linear Algebra for Computing Gröbner Bases of Linear Recursive Multidimensional Sequences. Journal of Symbolic Computation 83, Supplement C (Nov. 2017), 36--67. Special issue on the conference ISSAC 2015: Symbolic computation and computer algebra. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Berthomieu and J.-Ch. Faugère. 2017. In-depth comparison of the Berlekamp -- Massey -- Sakata and the Scalar-FGLM algorithms: the non adaptive variants. (May 2017). https://hal.inria.fr/hal-01516708 preprint.Google ScholarGoogle Scholar
  6. J. Berthomieu and J.-Ch. Faugère. 2018. Experiments. (2018). http://www-polsys.lip6.fr/~berthomieu/ISSAC2018.htmlGoogle ScholarGoogle Scholar
  7. S. R. Blackburn. 1997. Fast rational interpolation, Reed-Solomon decoding, and the linear complexity profiles of sequences. IEEE Transactions on Information Theory 43, 2 (1997), 537--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. R.C. Bose and D.K. Ray-Chaudhuri. 1960. On a class of error correcting binary group codes. Information and Control 3, 1 (1960), 68 -- 79.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Bras-Amorós and M. E. O'Sullivan. 2006. The Correction Capability of the Berlekamp--Massey--Sakata Algorithm with Majority Voting. Applicable Algebra in Engineering, Communication and Computing 17, 5 (2006), 315--335.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. P. Brent, F. G. Gustavson, and D. Y.Y. Yun. 1980. Fast solution of Toeplitz systems of equations and computation of Padé approximants. Journal of Algorithms 1, 3 (1980), 259 -- 295.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. G. Cantor and E. Kaltofen. 1991. On Fast Multiplication of Polynomials Over Arbitrary Algebras. Acta Informatica 28 (1991), 693--701. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. W. Cooley and J. W. Tukey. 1965. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comp. 19, 90 (1965), 297--301. http://www.jstor.org/stable/2003354Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Cox, J. Little, and D. O'Shea. 2015. Ideals, Varieties, and Algorithms (fourth ed.). Springer, New York. xvi+646 pages. An introduction to computational algebraic geometry and commutative algebra. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. Dornstetter. 1987. On the equivalence between Berlekamp's and Euclid's algorithms (Corresp.). IEEE Transactions on Information Theory 33, 3 (1987), 428--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. J.-Ch. Faugère and Ch. Mou. 2011. Fast Algorithm for Change of Ordering of Zero-dimensional Gröbner Bases with Sparse Multiplication Matrices. In Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation (ISSAC '11). ACM, New York, NY, USA, 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J.-Ch. Faugère and Ch. Mou. 2017. Sparse FGLM algorithms. Journal of Symbolic Computation 80, 3 (2017), 538 -- 569.Google ScholarGoogle ScholarCross RefCross Ref
  17. P. Fitzpatrick and J. Flynn. 1992. A Gröbner basis technique for Padé approximation. J. Symbolic Comput. 13, 2 (1992), 133 -- 138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. P. Fitzpatrick and G.H. Norton. 1990. Finding a basis for the characteristic ideal of an n-dimensional linear recurring sequence. IEEE Trans. Inform. Theory 36, 6 (1990), 1480--1487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Hocquenghem. 1959. Codes correcteurs d'erreurs. Chiffres 2 (1959), 147 -- 156.Google ScholarGoogle Scholar
  20. E. Jonckheere and Ch. Ma. 1989. A simple Hankel interpretation of the Berlekamp-Massey algorithm. Linear Algebra Appl. 125, 0 (1989), 65 -- 76.Google ScholarGoogle ScholarCross RefCross Ref
  21. N. Levinson. 1947. The Wiener RMS (Root-Mean-Square) error criterion in the filter design and prediction. J. Math. Phys. 25 (1947), 261--278.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. L. Massey. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory it-15 (1969), 122--127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Bernard Mourrain. 2017. Fast Algorithm for Border Bases of Artinian Gorenstein Algebras. In Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC '17). ACM, New York, NY, USA, 333--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sh. Sakata. 1988. Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J. Symbolic Comput. 5, 3 (1988), 321--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sh. Sakata. 1990. Extension of the Berlekamp-Massey Algorithm to N Dimensions. Inform. and Comput. 84, 2 (1990), 207--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sh. Sakata. 2009. The BMS Algorithm. In Gröbner Bases, Coding, and Cryptography, Massimiliano Sala, Shojiro Sakata, Teo Mora, Carlo Traverso, and Ludovic Perret (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 143--163.Google ScholarGoogle Scholar
  27. N. Wiener. 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A Polynomial-Division-Based Algorithm for Computing Linear Recurrence Relations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ISSAC '18: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
      July 2018
      418 pages
      ISBN:9781450355506
      DOI:10.1145/3208976

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 July 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader