skip to main content
10.1145/3208159.3208162acmotherconferencesArticle/Chapter ViewAbstractPublication PagescgiConference Proceedingsconference-collections
research-article

Hierarchical Cloth Simulation using Deep Neural Networks

Published:11 June 2018Publication History

ABSTRACT

Fast and reliable physically-based simulation techniques are essential for providing flexible visual effects for computer graphics content. In this paper, we propose a fast and reliable hierarchical cloth simulation method, which combines conventional physically-based simulation with deep neural networks (DNN). Simulations of the coarsest level of the hierarchical model are calculated using conventional physically-based simulations, and more detailed levels are generated by inference using DNN models. We demonstrate that our method generates reliable and fast cloth simulation results through experiments under various conditions.

References

  1. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.Google ScholarGoogle Scholar
  2. David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques. ACM, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Jan Bender, Daniel Weber, and Raphael Diziol. 2013. Fast and stable cloth simulation based on multi-resolution shape matching. Computers & Graphics 37, 8 (2013), 945--954. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011), 1--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. 2016. A Compositional Object-Based Approach to Learning Physical Dynamics. arXiv preprint arXiv:1612.00341 (2016).Google ScholarGoogle Scholar
  7. Mengyu Chu and Nils Thuerey. 2017. Data-driven Synthesis of Smoke Flows with CNN-based Feature Descriptors. ACM Trans. Graph. 36, 4, Article 69 (July 2017), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998), 46--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Theodore F Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and Joseph M Teran. 2015. Optimization integrator for large time steps. IEEE transactions on visualization and computer graphics 21, 10 (2015), 1103--1115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc., 2672--2680. http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980 http://arxiv.org/abs/1412.6980Google ScholarGoogle Scholar
  12. Yongjoon Lee, Sung-Eui Yoon, Seungwoo Oh, Duksu Kim, and Sunghee Choi. 2010. Multi-Resolution Cloth Simulation. Comput. Graph. Forum 29 (2010), 2225--2232.Google ScholarGoogle ScholarCross RefCross Ref
  13. Tiantian Liu, Adam W. Bargteil, James F. O'Brien, and Ladislav Kavan. 2013. Fast Simulation of Mass-spring Systems. ACM Trans. Graph. 32, 6, Article 214 (Nov. 2013), 7 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials. ACM Trans. Graph. 36, 3, Article 23 (May 2017), 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-based elastic materials. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matthias Müller. 2008. Hierarchical position based dynamics. In Proceedings of Virtual Reality Interactions and Physical Simulations. The Eurographics Association, 1--10.Google ScholarGoogle Scholar
  17. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2 (2007), 109--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projective Dynamics: Fast Simulation of General Constitutive Models. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '16). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 21--28. http://dl.acm.org/citation.cfm?id=2982818.2982822 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Matthew Overby, George E. Brown, Jie Li, and Rahul Narain. 2017. ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE Transactions on Visualization and Computer Graphics 23, 10 (Oct 2017), 2222--2234.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nikolas Schmitt, Martin Knuth, Jan Bender, and Arjan Kuijper. 2013. Multilevel Cloth Simulation using GPU Surface Sampling. VRIPHYS 13 (2013), 1--10.Google ScholarGoogle Scholar
  21. Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically Deformable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. 2016. Accelerating Eulerian Fluid Simulation With Convolutional Networks. ArXiv e-prints (July 2016). arXiv:cs.CV/1607.03597Google ScholarGoogle Scholar
  23. Kiwon Um, Xiangyu Hu, and Nils Thuerey. 2017. Liquid Splash Modeling with Neural Networks. arXiv to appear (Apr 2017), 6.Google ScholarGoogle Scholar
  24. Huamin Wang. 2015. A Chebyshev Semi-iterative Approach for Accelerating Projective and Position-based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015), 9 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea Tacchetti. 2017. Visual Interaction Networks: Learning a Physics Simulator from Video. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc., 4542--4550. http://papers.nips.cc/paper/7040-visual-interaction-networks-learning-a-physics-simulator-from-video.pdfGoogle ScholarGoogle Scholar
  26. Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In Proceedings of the 9th International Conference on Motion in Games (MIG '16). ACM, New York, NY, USA, 79--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Cheng Yang, Xubo Yang, and Xiangyun Xiao. 2016. Data-driven Projection Method in Fluid Simulation. Comput. Animat. Virtual Worlds 27, 3-4 (May 2016), 415--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Dongliang Zhang and Matthew M.F. Yuen. 2001. Cloth simulation using multilevel meshes. Computers & Graphics 25, 3 (2001), 383--389.Google ScholarGoogle ScholarCross RefCross Ref
  29. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv preprint arXiv:1703.10593 (2017).Google ScholarGoogle Scholar

Index Terms

  1. Hierarchical Cloth Simulation using Deep Neural Networks

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        CGI 2018: Proceedings of Computer Graphics International 2018
        June 2018
        284 pages
        ISBN:9781450364010
        DOI:10.1145/3208159

        Copyright © 2018 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 June 2018

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        CGI 2018 Paper Acceptance Rate35of159submissions,22%Overall Acceptance Rate35of159submissions,22%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader