skip to main content
10.1145/3173574.3173943acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets

Published:21 April 2018Publication History

ABSTRACT

This paper presents Dream Lens, an interactive visual analysis tool for exploring and visualizing large-scale generative design datasets. Unlike traditional computer aided design, where users create a single model, with generative design, users specify high-level goals and constraints, and the system automatically generates hundreds or thousands of candidates all meeting the design criteria. Once a large collection of design variations is created, the designer is left with the task of finding the design, or set of designs, which best meets their requirements. This is a complicated task which could require analyzing the structural characteristics and visual aesthetics of the designs. Two studies are conducted which demonstrate the usability and usefulness of the Dream Lens system, and a generatively designed dataset of 16,800 designs for a sample design problem is described and publicly released to encourage advancement in this area.

Skip Supplemental Material Section

Supplemental Material

pn3250-file3.mp4

mp4

87.7 MB

pn3250-file5.mp4

mp4

13.2 MB

References

  1. Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R. and Zhang, H. 2014. Topology-varying 3D Shape Creation via Structural Blending. ACM Trans. Graph. 33, 4: 158:1-- 158:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Allaire, G., Jouve, F. and Toader, A.-M. 2004. Structural optimization using sensitivity analysis and a level-set method. Journal of computational physics 194, 1: 363--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ashour, Y. and Kolarevic, B. 2015. Optimizing Creatively in Multi-objective Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design (SimAUD '15), Society for Computer Simulation International, 128--135. Retrieved March 24, 2017 from http://dl.acm.org/citation.cfm?id=2873021.2873039 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Attar, R., Aish, R., Stam, J., Brinsmead, D., Tessier, A., Glueck, M. and Khan, A. 2010. Embedded Rationality: A Unified Simulation Framework for Interactive Form Finding. International Journal of Architectural Computing 8, 4: 399--418.Google ScholarGoogle ScholarCross RefCross Ref
  5. Averkiou, M., Kim, V.G., Zheng, Y. and Mitra, N.J. 2014. ShapeSynth: Parameterizing Model Collections for Coupled Shape Exploration and Synthesis. Comput. Graph. Forum 33, 2: 125--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bendsoe, M.P. and Sigmund, O. 2013. Topology optimization: theory, methods, and applications. Springer Science & Business Media.Google ScholarGoogle Scholar
  7. Benjamin, D. 2012. Beyond Efficiency. S. Marble, Design workflow: 14--27.Google ScholarGoogle Scholar
  8. Ben-Yitzhak, O., Yogev, S., Golbandi, N., Har'El, N., Lempel, R., Neumann, A., Ofek-Koifman, S., Sheinwald, D., Shekita, E. and Sznajder, B. 2008. Beyond basic faceted search. Proceedings of the international conference on Web search and web data mining - WSDM '08, ACM Press, 33. Retrieved from http://portal.acm.org/citation.cfm?doid=1341531.13415 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bradner, E., Iorio, F. and Davis, M. 2014. Parameters Tell the Design Story: Ideation and Abstraction in Design Optimization. Proceedings of the Symposium on Simulation for Architecture & Urban Design (SimAUD '14), Society for Computer Simulation International, 26:1--26:8. Retrieved March 24, 2017 from http://dl.acm.org/citation.cfm?id=2664323.2664349 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Corne, D., Knowles, J.D. and Oates, M.J. 2000. e Pareto Envelope-Based Selection Algorithm for Multiobjective Optimisation. Proceedings of the 6th International Conference on Parallel Problem Solving from Nature (PPSN VI), Springer-Verlag, 839--848. Retrieved April 4, 2017 from http://dl.acm.org/citation.cfm?id=645825.669102 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Denning, J.D. and Pellacini, F. 2013. MeshGit: Diffing and Merging Meshes for Polygonal Modeling. ACM Trans. Graph. 32, 4: 35:1--35:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Doboš, J. and Steed, A. 2012. 3D Diff: An Interactive Approach to Mesh Differencing and Conflict Resolution. SIGGRAPH Asia 2012 Technical Briefs (SA '12), ACM, 20:1--20:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Doraiswamy, H., Ferreira, N., Lage, M., Vo, H., Wilson, L., Werner, H., Park, M. and Silva, C. 2015. Topology-based Catalogue Exploration Framework for Identifying View-enhanced Tower Designs. ACM Trans. Graph. 34, 6: 230:1--230:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gaspar-Cunha, A., Loyens, D. and Hattum, F. van. 2011. Aesthetic Design Using Multi-Objective Evolutionary Algorithms. Evolutionary Multi-Criterion Optimization, Springer, Berlin, Heidelberg, 374--388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hearst, M. 2008. UIs for Faceted Navigation: Recent Advances and Remaining Open Problems. International Journal of Machine Learning and Computing, 337--343. Retrieved from http://research.microsoft.com/enus/um/people/ryenw/hcir2008/doc/HCIR08Proceedings.pdfGoogle ScholarGoogle Scholar
  16. Jain, A., ormählen, T., Ritschel, T. and Seidel, H.-P. 2012. Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination. Comput. Graph. Forum 31, 2pt3: 631--640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kalogerakis, E., Chaudhuri, S., Koller, D. and Koltun, V. 2012. A Probabilistic Model for Component-based Shape Synthesis. ACM Trans. Graph. 31, 4: 55:1-- 55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, H., Choo, J., Park, H. and Endert, A. 2016. InterAxis: Steering Scatterplot Axes via ObservationLevel Interaction. IEEE Transactions on Visualization and Computer Graphics 22, 1: 131--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Koren, J., Zhang, Y. and Liu, X. 2008. Personalized Interactive Faceted Search. Proceedings of the 17th International Conference on World Wide Web (WWW '08), ACM, 477--486. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Koyama, Y., Sakamoto, D. and Igarashi, T. 2014. Crowd-powered Parameter Analysis for Visual Design Exploration. Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST '14), ACM, 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lee, B., Smith, G., Robertson, G.G., Czerwinski, M. and Tan, D.S. 2009. FacetLens: Exposing Trends and Relationships to Support Sensemaking Within Faceted Datasets. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '09), ACM, 1293--1302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lienhard, S., Specht, M., Neubert, B., Pauly, M. and Müller, P. 2014. umbnail Galleries for Procedural Models. Comput. Graph. Forum 33, 2: 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., P'ster, H., Ruml, W., Ryall, K., Seims, J. and Shieber, S. 1997. Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '97), ACM Press/Addison-Wesley Publishing Co., 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Matejka, J., Grossman, T. and Fitzmaurice, G. 2014. Video lens: rapid playback and exploration of large video collections and associated metadata. Proceedings of the 27th annual ACM symposium on User interface software and technology, ACM, 541--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D. and Benjamin, D. Project Discover: An Application of Generative Design for Architectural Space Planning.Google ScholarGoogle Scholar
  26. Porter, T. and Duff, T. 1984. Compositing Digital Images. Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '84), ACM, 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shea, K., Aish, R. and Gourtovaia, M. 2005. Towards integrated performance-driven generative design tools. Automation in Construction 14, 2: 253--264.Google ScholarGoogle ScholarCross RefCross Ref
  28. Stuart-Moore, J., Evans, M. and Jacobs, P. 2006. Interface Design for Browsing Faceted Metadata. Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL '06), ACM, 349--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Terry, M. and Mynatt, E.D. 2002. Side Views: Persistent, On-demand Previews for Open-ended Tasks. Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology (UIST '02), ACM, 71--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Turrin, M., von Buelow, P. and Stou's, R. 2011. Design explorations of performance driven geometry in architectural design using parametric modeling and genetic algorithms. Advanced Engineering Informatics 25, 4: 656--675. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ulu, N.G. and Kara, L.B. 2015. DMS2015--33: Generative interface structure design for supporting existing objects. Journal of Visual Languages & Computing 31, Part B: 171--183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vandic, D., Frasincar, F. and Kaymak, U. 2013. Facet Selection Algorithms for Web Product Search. Proceedings of the 22Nd ACM International Conference on Conference on Information & Knowledge Management (CIKM '13), ACM, 2327-- 2332. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Voigt, M., Werstler, A., Polowinski, J. and Meißner, K. 2012. Weighted Faceted Browsing for Characteristicsbased Visualization Selection rough End Users. Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS '12), ACM, 151--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wang, M.Y., Wang, X. and Guo, D. 2003. A level set method for structural topology optimization. Computer methods in applied mechanics and engineering 192, 1: 227--246.Google ScholarGoogle Scholar
  35. Xu, K., Zhang, H., Cohen-Or, D. and Chen, B. 2012. Fit and Diverse: Set Evolution for Inspiring 3D Shape Galleries. ACM Trans. Graph. 31, 4: 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yumer, M.E., Asente, P., Mech, R. and Kara, L.B. 2015. Procedural Modeling Using Autoencoder Networks. Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST '15), ACM, 109--118. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zaman, L., Stuerzlinger, W., Neugebauer, C., Woodbury, R., Elkhaldi, M., Shireen, N. and Terry, M. 2015. GEM-NI: A System for Creating and Managing Alternatives In Generative Design. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15), ACM, 1201--1210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Generative Design at Airbus | Customer Stories | Autodesk. Retrieved January 8, 2018 from https://www.autodesk.com/customer-stories/airbusGoogle ScholarGoogle Scholar
  39. Here's What You Get When You Design a Chair With Algorithms. WIRED. Retrieved January 8, 2018 from https://www.wired.com/2016/10/elbo-chair-autodeskalgorithm/Google ScholarGoogle Scholar
  40. Project Dreamcatcher | Autodesk Research. Retrieved April 5, 2017 from https://autodeskresearch.com/projects/dreamcatcherGoogle ScholarGoogle Scholar

Index Terms

  1. Dream Lens: Exploration and Visualization of Large-Scale Generative Design Datasets

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '18: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
      April 2018
      8489 pages
      ISBN:9781450356206
      DOI:10.1145/3173574

      Copyright © 2018 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 April 2018

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '18 Paper Acceptance Rate666of2,590submissions,26%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader