skip to main content
10.1145/3132525.3132548acmconferencesArticle/Chapter ViewAbstractPublication PagesassetsConference Proceedingsconference-collections
research-article
Public Access

FluxMarker: Enhancing Tactile Graphics with Dynamic Tactile Markers

Authors Info & Claims
Published:19 October 2017Publication History

ABSTRACT

For people with visual impairments, tactile graphics are an important means to learn and explore information. However, raised line tactile graphics created with traditional materials such as embossing are static. While available refreshable displays can dynamically change the content, they are still too expensive for many users, and are limited in size. These factors limit wide-spread adoption and the representation of large graphics or data sets. In this paper, we present FluxMaker, an inexpensive scalable system that renders dynamic information on top of static tactile graphics with movable tactile markers. These dynamic tactile markers can be easily reconfigured and used to annotate static raised line tactile graphics, including maps, graphs, and diagrams. We developed a hardware prototype that actuates magnetic tactile markers driven by low-cost and scalable electromagnetic coil arrays, which can be fabricated with standard printed circuit board manufacturing. We evaluate our prototype with six participants with visual impairments and found positive results across four application areas: location finding or navigating on tactile maps, data analysis, and physicalization, feature identification for tactile graphics, and drawing support. The user study confirms advantages in application domains such as education and data exploration.

Skip Supplemental Material Section

Supplemental Material

fp098.m4v

m4v

21.6 MB

References

  1. Braille authority of north america, http://www.brailleauthority.org/tg/.Google ScholarGoogle Scholar
  2. Hyperbraille, http://www.hyperbraille.de.Google ScholarGoogle Scholar
  3. The braille literacycrisis in america, 2009.Google ScholarGoogle Scholar
  4. Blindness statistics, 2015.Google ScholarGoogle Scholar
  5. C. M. Baker, L. R. Milne, J. Scofield, C. L. Bennett, and R.E. Ladner.Tactile graphics withavoice: usingqr codesto access text in tactile graphics. In Proceedings of ASSETS, pages 75-82.ACM, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A.M. Brock,P.Truillet,B. Oriola,D. Picard, and C. Jouffrais. Interactivity improves usability of geographic maps for visually impaired people. Human-Computer Interaction, 30(2):156-194, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Brown andA. Hurst.Viztouch: automatically generated tactile visualizations of coordinate spaces. In Proceedings of TEI, pages 131-138.ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. P. Chakraborti,H.K.Toprakci,P.Yang,N.Di Spigna, P. Franzon, andT. Ghosh.Acompact dielectric elastomer tubular actuator for refreshable braille displays. Sensors and Actuators A: Physical, 179:151-157, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  9. H.-C. Cho, B.-S. Kim, J.-J.Park, and J.-B. Song. Development of a braille display using piezoelectric linear motors. In SICE-ICASE, 2006. InternationalJoint Conference, pages 1917-1921. IEEE, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Ducasse, M. J. Macé, M. Serrano, and C. Jouffrais. Tangible reels: construction and exploration of tangible maps by visually impaired users. In Proceedings of CHI, pages 2186-2197.ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S.Follmer,D. Leithinger,A.Olwal,A. Hogge, andH. Ishii. inform: dynamic physical affordances and constraints through shape and object actuation. In Proceedings of UIST, volume 13, pages 417-426, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Fusco andV.S. Morash. The tactile graphics helper: providing audio clarification for tactile graphics using machine vision. In Proceedings of ASSETS, pages 97-106. ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. Hayhoe. Reducing passive cultural exclusion of people with disabilities, an epistemological approach. 2014.Google ScholarGoogle Scholar
  14. M.S. Horn,E.T. Solovey,R.J. Crouser, andR.J. Jacob. Comparing the use of tangible and graphical programming languages for informal science education. In Proceedings of CHI, pages 975-984.ACM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. H. Ishii andB. Ullmer.Tangible bits: towards seamless interfaces between people, bits and atoms. In Proceedings of CHI, pages 234-241.ACM, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. D. Jacobson. Navigating maps with little or no sight: An audio-tactile approach. Proceedings of ContentVisualization and Intermedia Representations, pages 95-102, 1998.Google ScholarGoogle Scholar
  17. Y. Jansen,P. Dragicevic,P. Isenberg,J. Alexander, A. Karnik, J. Kildal, S. Subramanian, and K. Hornbæk. Opportunities and challenges for data physicalization. In Proceedings of CHI, pages 3227-3236.ACM, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Jayant,M. Renzelmann,D.Wen,S. Krisnandi,R. Ladner, and D. Comden. Automated tactile graphics translation: in the field. In Proceedings of CHI, pages 75-82.ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. E. Karagozler, S. C. Goldstein, and J. R. Reid. Stress-driven mems assembly+ electrostatic forces= 1mm diameter robot. In Proceedings of IROS, pages 2763-2769. IEEE, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. S. Landau andL.Wells. Merging tactile sensory input and audio data by means of the talking tactile tablet. In Proceedings Eurohaptics, volume 3, 2003.Google ScholarGoogle Scholar
  21. M.Le Goc,L.H. Kim,A.Parsaei, J.-D. Fekete, P. Dragicevic, andS.Follmer. Zooids: Building blocks for swarm user interfaces. In Proceedings of UIST, pages 97-109.ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J.S. Lee andS. Lucyszyn.Amicromachined refreshable braille cell. journal of microelectromechanical systems, 14(4):673-682, 2005.Google ScholarGoogle Scholar
  23. D. Leithinger and H. Ishii. Relief: a scalable actuated shape display. In Proceedings of TEI, pages 221-222.ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. MacCurdy,R. Katzschmann,Y. Kim, andD. Rus. Printablehydraulics:a method forfabricating robotsby3d co-printing solids and liquids. In Proceedings of ICRA, pages 3878-3885. IEEE, 2016.Google ScholarGoogle Scholar
  25. D. McGookin, E. Robertson, and S. Brewster. Clutching at straws: using tangible interaction to provide non-visual access to graphs. In Proceedings of CHI, pages 1715-1724. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J.A. Miele,S. Landau, andD. Gilden.Talking tmap: Automated generation of audio-tactile maps using smith-kettlewell?s tmap software. BritishJournal ofVisual Impairment, 24(2):93-100, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  27. G.Pangaro,D. Maynes-Aminzade, andH. Ishii. The actuated workbench: computer-controlled actuation in tabletop tangible interfaces. In Proceedings of UIST, pages 181-190.ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. J.Patten andH. Ishii. Mechanical constraints as computational constraints in tabletop tangible interfaces. In Proceedings of CHI, pages 809-818.ACM, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Pelrine,A.Wong-Foy,B. McCoy,D. Holeman, R. Mahoney,G. Myers,J. Herson, andT.Low. Diamagnetically levitated robots: An approach to massively parallel robotic systems with unusual motion properties. In Proceedings of ICRA, pages 739-744. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  30. I. Poupyrev,T. Nashida,S. Maruyama,J. Rekimoto, and Y.Yamaji. Lumen: interactive visual and shape display for calm computing. In ACM SIGGRAPH 2004 Emerging technologies, page 17.ACM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. D. Prescher,G.Weber, andM. Spindler.Atactile windowing system for blind users. In Proceedings of ASSETS, pages 91-98.ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. Rice, R. D. Jacobson, R. G. Golledge, and D. Jones. Design considerations for haptic and auditory map interfaces. Cartography and Geographic Information Science, 32(4):381-391, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  33. N. Runyan and D. Blazie. Eap actuators aid the quest for the?holy braille?of tactile displays. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pages 764207-764207. International Society for Optics and Photonics, 2010.Google ScholarGoogle Scholar
  34. A. Russomanno, R. B. Gillespie, S. O?Modhrain, and M. Burns. The design of pressure-controlled valves for a refreshable tactile display. In World Haptics Conference (WHC), 2015 IEEE, pages 177-182. IEEE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  35. B. Schmitz andT. Ertl. Interactively displaying maps ona tactile graphics display. In Proceedings 2012Workshop on Spatial Knowledge Acquisition with Limited Information Displays, pages 13-18, 2012.Google ScholarGoogle Scholar
  36. J. Schneider andT. Strothotte. Constructiveexplorationof spatial information by blind users. In Proceedings of ASSETS, pages 188-192.ACM, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. ?tampach and E. Mulícková. Automated generation of tactile maps. Journal of Maps, 12(sup1):532-540, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  38. E. Strasnick,J.Yang,K.Tanner,A.Olwal, andS.Follmer. shiftio: Reconfigurable tactile elements for dynamic affordances and mobile interaction. In Proceedings of CHI. ACM, 2017. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S.Swaminathan,T. Roumen,R.Kovacs,D. Stangl, S. Mueller, andP. Baudisch. Linespace:Asensemaking platform for the blind. In Proceedings of CHI, pages 2175-2185.ACM, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A.Tatham. The designof tactile maps: theoretical and practical considerations. Proceedings of international cartographic association: mapping the nations, pages 157-166, 1991.Google ScholarGoogle Scholar
  41. P.Taylor,A. Moser, andA. Creed.Asixty-four element tactile display using shape memory alloywires. Displays, 18(3):163-168, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  42. J. Underkoffler and H. Ishii. Urp: a luminous-tangible workbench for urban planning and design. In Proceedings of CHI, pages 386-393.ACM, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T. Völkel,G.Weber, andU. Baumann.Tactile graphics revised: the novel brailledis 9000 pin-matrix device with multitouch input. Computers HelpingPeople with Special Needs, pages 835-842, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. F.-H.Yeh and S.-H. Liang. Mechanism designof the flapper actuator in chinese braille display. Sensors and Actuators A: Physical, 135(2):680-689, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  45. W.Yu,R. Ramloll, andS. Brewster. Haptic graphs for blind computer users. In Haptic human-computer interaction, pages 41-51. Springer, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. L. Zeng andG.Weber. Audio-haptic browser fora geographical information system. Computers HelpingPeople with Special Needs, pages 466-473, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Zeng andG.Weber. Atmap: annotated tactile maps for the visually impaired. In Cognitive Behavioural Systems, pages 290-298. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. FluxMarker: Enhancing Tactile Graphics with Dynamic Tactile Markers

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ASSETS '17: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility
      October 2017
      450 pages
      ISBN:9781450349260
      DOI:10.1145/3132525

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 19 October 2017

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      ASSETS '17 Paper Acceptance Rate28of126submissions,22%Overall Acceptance Rate436of1,556submissions,28%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader