skip to main content
research-article

An adaptive generalized interpolation material point method for simulating elastoplastic materials

Published:20 November 2017Publication History
Skip Abstract Section

Abstract

We present an adaptive Generalized Interpolation Material Point (GIMP) method for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of different regions of the material, leading to an efficient MPM solver that concentrates most of the computation resources in specific regions of interest. We propose a C1 continuous adaptive basis function that satisfies the partition of unity property and remains non-negative throughout the computational domain. We develop a practical strategy for particle-grid transfers that leverages the recently introduced SPGrid data structure for storing sparse multi-layered grids. We demonstrate the robustness and efficiency of our method on the simulation of various elastic and plastic materials. We also compare key kernel components to uniform grid MPM solvers to highlight performance benefits of our method.

Skip Supplemental Material Section

Supplemental Material

a223-gao.mp4

mp4

226.1 MB

References

  1. M. Aanjaneya, M. Gao, H. Liu, C. Batty, and E. Sifakis. 2017. Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids. ACM Trans Graph. 36, 4 (July 2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. B. Adams, M. Pauly, R. Keiser, and L. Guibas. 2007. Adaptively sampled particle fluids. In ACM Trans Graph, Vol. 26. ACM, 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. M. Andersen and L. Andersen. 2007. Material-Point Method Analysis of Bending in Elastic Beams. In Inter Conf Civil, Struct Env Eng Comp.Google ScholarGoogle Scholar
  4. R. Ando, N. Thurey and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans Vis Comp Graph 18, 8 (2012), 1202--1214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Ando, N. Thurey, and C. Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans Graph 32, 4 (2013), 103:1--103:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. G. Bardenhagen and E. M. Kober. 2004. The generalized interpolation material point method. Comp Mod in Eng and Sci 5, 6 (2004), 477--496.Google ScholarGoogle Scholar
  7. A. Bargteil, C. Wojtan, J. Hodgins, and G. Turk. 2007. A finite element method for animating large viscoplastic flow. ACM Trans Graph 26, 3 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. Batty, S. Xenos, and B. Houston. 2010. Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids. In Proc of Eurographics.Google ScholarGoogle Scholar
  9. J. Bonet and R. Wood. 2008. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press.Google ScholarGoogle Scholar
  10. J. Brackbill, D. Kothe, and H. Ruppel. 1988. FLIP: A low-dissipation, PIC method for fluid flow. Comp Phys Comm 48 (1988), 25--38.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Bridson. 2008. Fluid simulation for Comp Graph. Taylor & Francis. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Capell, S. Green, B. Curless, Tom D., and Z. Popović. 2002. A multiresolution framework for dynamic deformations. In Proc of the 2002 ACM SIGGRAPH/Eurographics Symp on Comp Anim. ACM, 41--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. N. Chentanez and M. Müller. 2011. Real-time Eulerian water simulation using a restricted tall cell grid. ACM Trans on Graph (TOG) 30, 4 (2011), 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. M. Cohen, S. Tariq, and S. Green. 2010. Interactive fluid-particle simulation using translating Eulerian grids. In Proc of the 2010 ACM SIGGRAPH Symp on Interactive 3D Graph and Games. ACM, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri. 2007. Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method. Int J Fract 143, 1 (2007), 79--102.Google ScholarGoogle ScholarCross RefCross Ref
  16. G. Daviet and F. Bertails-Descoubes. 2016. A Semi-Implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans Graph 35, 4 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Debunne, M. Desbrun, A. Barr, and M-P. Cani. 1999. Interactive multiresolution Anim of deformable models. In Comp Anim and SimulationâĂŹ99. Springer, 133--144.Google ScholarGoogle Scholar
  18. C. Dick, J. Georgii, and R. Westermann. 2011. A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans on Vis and Comp Graph 17, 11 (2011), 1663--1675. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. E. English, L. Qiu, Y. Yu, and R. Fedkiw. 2013. Chimera grids for water simulation. In Proc of the 12th ACM SIGGRAPH/Eurographics Symp on Comp Anim. ACM, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Ferstl, R. Ando, C. Wojtan, R. Westermann, and N. Thuerey. 2016. Narrow band FLIP for liquid simulations. In Comp Graph Forum, Vol. 35. Wiley Online Library, 225--232.Google ScholarGoogle Scholar
  21. T. Fries, A. Byfut, A. Alizada, K. Cheng, and A. Schröder. 2011. Hanging nodes and XFEM. Int J Numer Meth Eng 86, 4-5 (2011), 404--430.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Gao, A. Pradhana, C.Jiang, and E. Sifakis. 2017. Supplemental Document: An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials. (2017).Google ScholarGoogle Scholar
  23. E. Grinspun, P. Krysl, and P. Schröder. 2002. CHARMS: a simple framework for adaptive simulation. ACM Trans on Graph (TOG) 21, 3 (2002), 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans on Graph (TOG) 25, 1 (2006), 151--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. Hughes. 2012. The finite element method: linear static and dynamic finite element analysis. Courier Corporation.Google ScholarGoogle Scholar
  26. G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. In ACM Trans on Graph (TOG), Vol. 25. ACM, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Jiang, T. Gast, and J. Teran. 2017. Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. 2015. The Affine Particle-In-Cell Method. ACM Trans Graph 34, 4 (2015), 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Course. 24:1--24:52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. P. Kaufmann, S. Martin, M. Botsch, and M. Gross. 2009. Flexible simulation of deformable models using discontinuous Galerkin FEM. Graphical Models 71, 4 (2009), 153--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. 2016. Drucker-Prager Elastoplasticity for Sand Anim. ACM Trans Graph 35, 4 (July 2016). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. F. Labelle and J. R. Shewchuk. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. In ACM Trans on Graph (TOG), Vol. 26. ACM, 57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. G. Legrain, R. Allais, and P. Cartraud. 2011. On the use of the extended finite element method with quadtree/octree meshes. Int J Numer Meth Eng 86, 6 (2011), 717--743.Google ScholarGoogle ScholarCross RefCross Ref
  34. Y.P. Lian, P.F. Yang, X. Zhang, F. Zhang, Y. Liu, and P. Huang. 2015. A mesh-grading material point method and its parallelization for problems with localized extreme deformation. Comp Meth App Mech Eng 289 (2015), 291 -- 315.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Lian, X. Zhang, F. Zhang, and X. Cui. 2014. Tied interface grid material point method for problems with localized extreme deformation. Int J Imp Eng 70 (2014), 50--61.Google ScholarGoogle ScholarCross RefCross Ref
  36. H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. 2016. A scalable schur-complement fluids solver for heterogeneous compute platforms. ACM Trans on Graph (TOG) 35, 6 (2016), 201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. In ACM Trans Graph, Vol. 23. ACM, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Ma, H. Lu, and R. Komanduri. 2006. Structured mesh reinement in generalized interpolation material point (GIMP) method for simulation of dynamic problems. Comp Model Eng & Sci 12, 3 (2006), 213.Google ScholarGoogle Scholar
  39. J. Ma, H. Lu, B. Wang, S. Roy, R. Hornung, A. Wissink, and R. Komanduri. 2005. Multiscale simulations using generalized interpolation material point (GIMP) method and SAMRAI parallel processing. Comp Model Eng & Sci 8, 2 (2005), 135--152.Google ScholarGoogle Scholar
  40. P-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M-P. Cani. 2016. Adaptive physically based models in Comp Graph. In Comp Graph Forum. Wiley Online Library. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. C. Mast. 2013. Modeling landslide-induced flow interactions with structures using the Material Point Method. Ph.D. Dissertation.Google ScholarGoogle Scholar
  42. K. Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans on Graph (TOG) 32, 3 (2013), 27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. A. Otaduy, D. Germann, S. Redon, and M. Gross. 2007. Adaptive deformations with fast tight bounds. In Proc of the 2007 ACM SIGGRAPH/Eurographics Symp on Comp Anim. Eurographics Association, 181--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. S. Patel, A. Chu, J. Cohen, and F. Pighin. 2005. Fluid simulation via disjoint translating grids. In ACM SIGGRAPH 2005 Sketches. ACM, 139. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. D. Ram, T. Gast, C. Jiang, C. Schroeder, A. Stomakhin, J. Teran, and P. Kavehpour. 2015. A material point method for viscoelastic fluids, foams and sponges. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim. 157--163. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. M. Seiler, D. Steinemann, J. Spillmann, and M. Harders. 2011. Robust interactive cutting based on an adaptive octree simulation mesh. The Vis Comp 27, 6--8 (2011), 519--529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. 2014. SPGrid: A Sparse Paged Grid Structure Applied to Adaptive Smoke Simulation. ACM Trans Graph 33, 6, Article 205 (Nov. 2014), 205:1--205:12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. E. Sifakis and J. Barbic. 2012. FEM Simulation of 3D Deformable Solids: A Practitioner's Guide to Theory, Discretization and Model Reduction. In ACM SIGGRAPH 2012 Courses (SIGGRAPH '12). Article 20, 50 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. 2007. Hybrid simulation of deformable solids. In Proc ACM SIGGRAPH/Eurographics Symp Comp Anim. 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. In ACM Tran Graph, Vol. 30. ACM, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Steffen, R. M. Kirby, and M. Berzins. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Meth Eng 76, 6 (2008), 922--948.Google ScholarGoogle ScholarCross RefCross Ref
  52. D. Steinemann, M. A. Otaduy, and M. Gross. 2008. Fast adaptive shape matching deformations. In Proc of the 2008 ACM SIGGRAPH/Eurographics Symp on Comp Anim. Eurographics Association, 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. 2012. Energetically consistent invertible elasticity. In Proc Symp Comp Anim. 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. 2013. A Material Point Method for snow simulation. ACM Trans Graph 32, 4 (2013), 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Trans Graph 33, 4 (2014), 138:1--138:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. D. Sulsky, S. Zhou, and H. Schreyer. 1995. Application of a particle-in-cell method to solid mechanics. Comp Phys Comm 87, 1 (1995), 236--252.Google ScholarGoogle ScholarCross RefCross Ref
  57. A. P. Tampubolon, T. Gast, G. Klár, C. Fu, J. Teran, C. Jiang, and K. Museth. 2017. Multi-species simulation of porous sand and water mixtures. ACM Trans Graph 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. H. Tan and J. A. Nairn. 2002. Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comp Meth App Mech Eng 191, 19âĂŞ20 (2002), 2123 -- 2137.Google ScholarGoogle Scholar
  59. M. Wicke, D. Ritchie, B. Klingner, S. Burke, J. Shewchuk, and J. O'Brien. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans Graph 29, 4 (2010), 49:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. C. Wojtan and G. Turk. 2008. Fast viscoelastic behavior with thin features. ACM Trans Graph 27, 3 (2008), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Y. Yue, B. Smith, C. Batty, C. Zheng, and E. Grinspun. 2015. Continuum foam: a material point method for shear-dependent flows. ACM Trans Graph 34, 5 (2015), 160:1--160:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans Graph 24, 3 (2005), 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. An adaptive generalized interpolation material point method for simulating elastoplastic materials

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 36, Issue 6
      December 2017
      973 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3130800
      Issue’s Table of Contents

      Copyright © 2017 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 November 2017
      Published in tog Volume 36, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader