skip to main content
10.1145/3025453.3025491acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access
Honorable Mention

Cardboard Machine Kit: Modules for the Rapid Prototyping of Rapid Prototyping Machines

Published:02 May 2017Publication History

ABSTRACT

Digital fabrication machines (such as laser cutters or 3D printers) can be instructed to produce any part geometry within their application space. However, machines' application spaces are not easily modified or extended. How can we enable the production of application-specific computer-controlled machines by machine building novices? How can we facilitate rapid prototyping of rapid prototyping tools? We propose a novel set of modules, the Cardboard Machine Kit, for the construction of digital fabrication machines. These open-source modules are implemented using cardboard frames, stepper motors, and networked electronics controlled through a Python library. We evaluated the kit both through machine building workshops and by studying the usage of the kit in the wild. In the wild we observed more than 500 novice machine builders who built 125 different machines for 15 different application types. We argue that this breadth demonstrates the efficacy of this modular approach. Finally we discuss the limitations of the Cardboard Machine Kit and discuss how it could inform future machine building infrastructure.

Skip Supplemental Material Section

Supplemental Material

pn1201.mp4

mp4

31.3 MB

p3657-peek.mp4

mp4

283 MB

References

  1. Morgan G. Ames, Jeffrey Bardzell, Shaowen Bardzell, Silvia Lindtner, David A. Mellis, and Daniela K. Rosner. 2014. Making Cultures: Empowerment, Participation, and Democracy - or Not?. In CHI '14 Extended Abstracts on Human Factors in Computing Systems (CHI EA '14). ACM, New York, NY, USA, 1087--1092. DOI: http://dx.doi.org/10.1145/2559206.2579405 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ayah Bdeir. 2009. Electronics As Material: LittleBits. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction (TEI '09). ACM, New York, NY, USA, 397--400. DOI: http://dx.doi.org/10.1145/1517664.1517743 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Leah Buechley, Daniela K. Rosner, Eric Paulos, and Amanda Williams. 2009. DIY for CHI: Methods, Communities, and Values of Reuse and Customization. In CHI '09 Extended Abstracts on Human Factors in Computing Systems (CHI EA '09). ACM, New York, NY, USA, 4823--4826. DOI: http://dx.doi.org/10.1145/1520340.1520750 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Clark. 1988. The design philosophy of the DARPA Internet protocols. ACM SIGCOMM Computer Communication Review 18, 4 (1988), 106--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Wei Gao, Yunbo Zhang, Diogo C Nazzetta, Karthik Ramani, and Raymond J Cipra. 2015. RevoMaker: Enabling Multi-directional and Functionally-embedded 3D printing using a Rotational Cuboidal Platform. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 437--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Gramazio and M. Kohler. 2014. Made by Robots: Challenging Architecture at a Larger Scale. Wiley. https://books.google.com/books?id=YUyPAwAAQBAJGoogle ScholarGoogle Scholar
  7. Scott E Hudson. 2014. Printing teddy bears: a technique for 3D printing of soft interactive objects. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 459--468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jennifer Jacobs and Amit Zoran. 2015. Hybrid Practice in the Kalahari: Design Collaboration Through Digital Tools and Hunter-Gatherer Craft. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, New York, NY, USA, 619--628. DOI: http://dx.doi.org/10.1145/2702123.2702362 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. A. Lewis. 2006. Direct Ink Writing of 3D Functional Materials. Advanced Functional Materials 16, 17 (2006), 2193--2204. DOI: http://dx.doi.org/10.1002/adfm.200600434 Google ScholarGoogle ScholarCross RefCross Ref
  10. Evan Malone and Hod Lipson. 2007. Fab@Home: the personal desktop fabricator kit. Rapid Prototyping Journal 13, 4 (2007), 245--255. Google ScholarGoogle ScholarCross RefCross Ref
  11. David Mellis, Sean Follmer, Björn Hartmann, Leah Buechley, and Mark D. Gross. 2013a. FAB at CHI: Digital Fabrication Tools, Design, and Community. In CHI '13 Extended Abstracts on Human Factors in Computing Systems (CHI EA '13). ACM, New York, NY, USA, 3307--3310. DOI: http://dx.doi.org/10.1145/2468356.2479673 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. David A. Mellis, Sam Jacoby, Leah Buechley, Hannah Perner-Wilson, and Jie Qi. 2013b. Microcontrollers As Material: Crafting Circuits with Paper, Conductive Ink, Electronic Components, and an "Untoolkit". In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction (TEI '13). ACM, New York, NY, USA, 83--90. DOI: http://dx.doi.org/10.1145/2460625.2460638 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ilan Moyer. 2013. A Gestalt Framework for Virtual Machine Control of Automated Tools. Master's thesis. MIT, Cambridge.Google ScholarGoogle Scholar
  14. Stefanie Mueller, Sangha Im, Serafima Gurevich, Alexander Teibrich, Lisa Pfisterer, François Guimbretière, and Patrick Baudisch. 2014. WirePrint: 3D Printed Previews for Fast Prototyping. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (UIST '14). ACM, New York, NY, USA, 273--280. DOI: http://dx.doi.org/10.1145/2642918.2647359 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Nadya Peek and James Coleman. 2015. Design Machines. In SIGGRAPH 2015: Studio (SIGGRAPH '15). ACM, New York, NY, USA, Article 2, 1 pages. DOI: http://dx.doi.org/10.1145/2785585.2792578 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Alec Rivers, Ilan E. Moyer, and Frédo Durand. 2012. Position-correcting Tools for 2D Digital Fabrication. ACM Trans. Graph. 31, 4, Article 88 (July 2012), 7 pages. DOI:http://dx.doi.org/10.1145/2185520.2185584 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lawrence G. Roberts. 1978. The evolution of packet switching. Proc. IEEE 66, 11 (1978), 1307--1313. Google ScholarGoogle ScholarCross RefCross Ref
  18. Daniel Saakes. 2016. KAIST Cardboard Stage Metric. https://github.com/daan/cardboard-stage-metric. (2016).Google ScholarGoogle Scholar
  19. Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-to-end arguments in system design. ACM Transactions on Computer Systems (TOCS) 2, 4 (1984), 277--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Valkyrie Savage, Andrew Head, Björn Hartmann, Dan B. Goldman, Gautham Mysore, and Wilmot Li. 2015. Lamello: Passive Acoustic Sensing for Tangible Input Components. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15). ACM, New York, NY, USA, 1277--1280. DOI: http://dx.doi.org/10.1145/2702123.2702207 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Skylar Tibbits. 2014. 4D Printing: Multi-Material Shape Change. Architectural Design 84, 1 (2014), 116--121. DOI:http://dx.doi.org/10.1002/ad.1710 Google ScholarGoogle ScholarCross RefCross Ref
  22. Guanyun Wang, Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, and Hiroshi Ishii. 2016. xPrint: A Modularized Liquid Printer for Smart Materials Deposition. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (CHI '16). ACM, New York, NY, USA, 5743--5752. DOI: http://dx.doi.org/10.1145/2858036.2858281 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Christian Weichel, John Hardy, Jason Alexander, and Hans Gellersen. 2015. ReForm: integrating physical and digital design through bidirectional fabrication. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 93--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (UIST '12). ACM, New York, NY, USA, 589--598. DOI: http://dx.doi.org/10.1145/2380116.2380190 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Willie Wu, Adam DeConinck, and Jennifer A. Lewis. 2011. Omnidirectional Printing of 3D Microvascular Networks. Advanced Materials 23, 24 (2011), H178--H183. DOI: http://dx.doi.org/10.1002/adma.201004625 Google ScholarGoogle ScholarCross RefCross Ref
  26. Amit Zoran and Joseph A. Paradiso. 2013. FreeD: A Freehand Digital Sculpting Tool. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13). ACM, New York, NY, USA, 2613--2616. DOI: http://dx.doi.org/10.1145/2470654.2481361 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Cardboard Machine Kit: Modules for the Rapid Prototyping of Rapid Prototyping Machines

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader