skip to main content
10.1145/3009977.3010050acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

Classification of Schizophrenia versus normal subjects using deep learning

Authors Info & Claims
Published:18 December 2016Publication History

ABSTRACT

Motivated by deep learning approaches to classify normal and neuro-diseased subjects in functional Magnetic Resonance Imaging (fMRI), we propose stacked autoencoder (SAE) based 2-stage architecture for disease diagnosis. In the proposed architecture, a separate 4-hidden layer autoencoder is trained in unsupervised manner for feature extraction corresponding to every brain region. Thereafter, these trained autoencoders are used to provide features on class-labeled input data for training a binary support vector machine (SVM) based classifier. In order to design a robust classifier, noisy or inactive gray matter voxels are filtered out using a proposed covariance based approach. We applied the proposed methodology on a public dataset, namely, 1000 Functional Connectomes Project Cobre dataset consisting of fMRI data of normal and Schizophrenia subjects. The proposed architecture is able to classify normal and Schizophrenia subjects with 10-fold cross-validation accuracy of 92% that is better compared to the existing methods used on the same dataset.

References

  1. A. Anderson and M. S. Cohen. Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial, 2013.Google ScholarGoogle Scholar
  2. P. Baldi. Autoencoders, unsupervised learning, and deep architectures. ICML unsupervised and transfer learning, 27(37--50):1, 2012.Google ScholarGoogle Scholar
  3. B. Biswal, F. Zerrin Yetkin, V. M. Haughton, and J. S. Hyde. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in medicine, 34(4):537--541, 1995.Google ScholarGoogle Scholar
  4. H. Cheng, S. Newman, J. Goñi, J. S. Kent, J. Howell, A. Bolbecker, A. Puce, B. F. O'Donnell, and W. P. Hetrick. Nodal centrality of functional network in the differentiation of Schizophrenia. Schizophrenia research, 168(1):345--352, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  5. D. Chyzhyk, A. Savio, and M. Graña. Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM. Neural Networks, 68:23--33, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Cordes, V. M. Haughton, K. Arfanakis, G. J. Wendt, P. A. Turski, C. H. Moritz, M. A. Quigley, and M. E. Meyerand. Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 21(9):1636--1644, 2000.Google ScholarGoogle Scholar
  7. C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273--297, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. D. Fox and M. Greicius. Clinical applications of resting state functional connectivity. Frontiers in systems neuroscience, 4:19, 2010.Google ScholarGoogle Scholar
  9. T.-H. Hsieh, M.-J. Sun, and S.-F. Liang. Diagnosis of Schizophrenia patients based on brain network complexity analysis of resting-state fMRI. In The 15th International Conference on Biomedical Engineering, pages 203--206. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Huang, J. Li, L. Sun, J. Ye, A. Fleisher, T. Wu, K. Chen, E. Reiman, A. D. N. Initiative, et al. Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation. NeuroImage, 50(3):935--949, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. D. T. Jones, P. Vemuri, M. C. Murphy, J. L. Gunter, M. L. Senjem, M. M. Machulda, S. A. Przybelski, B. E. Gregg, K. Kantarci, D. S. Knopman, et al. Non-stationarity in the resting brain's modular architecture. PloS one, 7(6):e39731, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Kim, V. D. Calhoun, E. Shim, and J.-H. Lee. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage, 124:127--146, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. Kuang, X. Guo, X. An, Y. Zhao, and L. He. Discrimination of ADHD based on fMRI data with Deep Belief Network. In International Conference on Intelligent Computing, pages 225--232. Springer, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  14. N. Leonardi, J. Richiardi, M. Gschwind, S. Simioni, J.-M. Annoni, M. Schluep, P. Vuilleumier, and D. Van De Ville. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. NeuroImage, 83:937--950, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. N. Leonardi and D. Van De Ville. Identifying network correlates of brain states using tensor decompositions of whole-brain dynamic functional connectivity. In Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on, pages 74--77. IEEE, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. X. Li, D. Zhu, X. Jiang, C. Jin, X. Zhang, L. Guo, J. Zhang, X. Hu, L. Li, and T. Liu. Dynamic functional connectomics signatures for characterization and differentiation of ptsd patients. Human brain mapping, 35(4):1761--1778, 2014.Google ScholarGoogle Scholar
  17. D. Liu, N. Zhong, and Y. Qin. Exploring functional connectivity networks in fMRI data using clustering analysis. In International Conference on Brain Informatics, pages 148--159. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. M. R. Network and the University of New Mexico. The center for biomedical research excellence (cobre), 2012.Google ScholarGoogle Scholar
  19. A. Ng. Sparse autoencoder. CS294A Lecture notes, 72:1--19, 2011.Google ScholarGoogle Scholar
  20. Ü. Sakoğlu, G. D. Pearlson, K. A. Kiehl, Y. M. Wang, A. M. Michael, and V. D. Calhoun. A method for evaluating dynamic functional network connectivity and task-modulation: application to Schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5--6):351--366, 2010.Google ScholarGoogle Scholar
  21. A. Savio and M. Graña. Local activity features for computer aided diagnosis of Schizophrenia on resting-state fMRI. Neurocomputing, 164:154--161, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. T. Starck, J. Nikkinen, J. Rahko, J. Remes, T. Hurtig, H. Haapsamo, K. Jussila, S. Kuusikko-Gauffin, M.-L. Mattila, E. Jansson-Verkasalo, D. L. Pauls, H. Ebeling, I. Moilanen, O. Tervonen, and V. J. Kiviniemi. Resting state fmri reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in asd despite motion scrubbing. Front Hum Neurosci, 7:802, Nov 2013. 24319422{pmid}.Google ScholarGoogle ScholarCross RefCross Ref
  23. H.-I. Suk, S.-W. Lee, and D. Shen. A hybrid of deep network and hidden markov model for MCI identification with resting-state fMRI. In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages 573--580. Springer, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. V. Vapnik. The nature of statistical learning theory. Springer Science & Business Media, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Classification of Schizophrenia versus normal subjects using deep learning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICVGIP '16: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing
        December 2016
        743 pages
        ISBN:9781450347532
        DOI:10.1145/3009977

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 December 2016

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ICVGIP '16 Paper Acceptance Rate95of286submissions,33%Overall Acceptance Rate95of286submissions,33%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader