skip to main content
10.1145/2994551.2994557acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

Empirical Validation of Commodity Spectrum Monitoring

Authors Info & Claims
Published:14 November 2016Publication History

ABSTRACT

We describe our efforts to empirically validate a distributed spectrum monitoring system built on commodity smartphones and embedded low-cost spectrum sensors. This system enables real-time spectrum sensing, identifies and locates active transmitters, and generates alarm events when detecting anomalous transmitters. To evaluate the feasibility of such a platform, we perform detailed experiments using a prototype hardware platform using smartphones and RTL dongles. We identify multiple sources of error in the sensing results and the end-user overhead (i.e. smartphone energy draw). We propose and implement a variety of techniques to identify and overcome errors and uncertainty in the data, and to reduce energy consumption. Our work demonstrates the basic viability of user-driven spectrum monitoring on commodity devices.

Skip Supplemental Material Section

Supplemental Material

p96.mov

mov

720.5 MB

References

  1. http://whitespaces.spectrumbridge.com/whitespaces/home.aspx.Google ScholarGoogle Scholar
  2. https://www.google.com/get/spectrumdatabase/.Google ScholarGoogle Scholar
  3. http://sdr.osmocom.org/trac/wiki/rtl-sdr.Google ScholarGoogle Scholar
  4. https://www.tablix.org/~avian/blog/archives/2015/03/noise_figure_measurements_of_rtl_sdr_dongles/.Google ScholarGoogle Scholar
  5. https://www.msoon.com/LabEquipment/PowerMonitor/.Google ScholarGoogle Scholar
  6. M. Altamaimi, M. B. Weiss, and M. McHenry. Enforcement and spectrum sharing: Case studies of federal-commercial sharing. In TPRC, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Arcia-Moret, E. Pietrosemoli, and M. Zennaro. WhispPi: White space monitoring with Raspberry Pi. In Global Information Infrastructure Symposium, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh. White space networking with Wi-Fi like connectivity. In SIGCOMM, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Bansal, B. Chen, and P. Sinha. FastProbe: Malicious user detection in cognitive radio networks through active transmissions. In INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  10. N. Brouwers and K. Langendoen. Will dynamic spectrum access drain my battery? Embedded Software Report Series, ES-2014-01, 2014.Google ScholarGoogle Scholar
  11. A. Chakraborty and S. R. Das. Measurement-augmented spectrum databases for white space spectrum. In CoNEXT, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Z. Chen, T. Cooklev, C. Chen, and C. Pomalaza-Raez. Modeling primary user emulation attacks and defenses in cognitive radio networks. In IPCCC, 2009.Google ScholarGoogle Scholar
  13. Y.-C. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characterization for metropolitan-scale Wi-Fi localization. In MobiSys, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. J. M. Dyaberi, B. Parsons, V. S. Pai, K. Kannan, Y.-F. R. Chen, R. Jana, D. Stern, and A. Varshavsky. Managing cellular congestion using incentives. IEEE Communications Magazine, 50(11), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio. Network sensing through smartphone-based crowdsourcing. In SenSys, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. O. Fatemieh, R. Chandra, and C. Gunter. Secure collaborative sensing for crowdsourcing spectrum data in white space networks. In DySPAN, 2010.Google ScholarGoogle Scholar
  17. FCC. Second report and order and memorandum opinion and order. FCC-08-260, 2008.Google ScholarGoogle Scholar
  18. FCC. Report and order and second further notice of proposed rulemaking. FCC-15-47, 2015.Google ScholarGoogle Scholar
  19. A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Caceres. Obtaining in-context measurements of cellular network performance. In IMC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. D. Han, D. G. Andersen, M. Kaminsky, K. Papagiannaki, and S. Seshan. Access point localization using local signal strength gradient. In PAM. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. H. Hassanieh, L. Shi, O. Abari, E. Hamed, and D. Katabi. GHz-wide sensing and decoding using the sparse fourier transform. In INFOCOM, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  22. G. Hsieh and R. Kocielnik. You get who you pay for: The impact of incentives on participation bias. In CSCW, 2016. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close examination of performance and power characteristics of 4G LTE networks. In MobiSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. A. P. Iyer, K. Chintalapudi, V. Navda, R. Ramjee, V. N. Padmanabhan, and C. R. Murthy. SpecNet: Spectrum sensing sans frontières. In NSDI, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. P. Kaligineedi, M. Khabbazian, and V. Bhargava. Malicious user detection in a cognitive radio cooperative sensing system. IEEE TWC, 9(8):2488--2497, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. Laska, W. Bradley, T. Rondeau, K. Nolan, and B. Vigoda. Compressive sensing for dynamic spectrum access networks: Techniques and tradeoffs. In DySPAN, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, and F. Zhao. Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service. In MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. L. Littman and B. Revare. New times, new methods: Upgrading spectrum enforcement. Silicon Flatirons Roundtable Series on Entrepreneurship, Innovation, and Public Policy, Feb. 2014.Google ScholarGoogle Scholar
  29. J. Liu, B. Priyantha, T. Hart, H. S. Ramos, A. A. F. Loureiro, and Q. Wang. Energy efficient GPS sensing with cloud offloading. In SenSys, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Liu, Y. Chen, W. Trappe, and L. J. Greenstein. Non-interactive localization of cognitive radios based on dynamic signal strength mapping. In WONS, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng. Towards commoditized real-time spectrum monitoring. In HotWireless, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y. Zhao, and H. Zheng. Energy and performance of smartphone radio bundling in outdoor environments. In WWW, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Pfammatter, D. Giustiniano, and V. Lenders. A software-defined sensor architecture for large-scale wideband spectrum monitoring. In IPSN, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat. Learning to share: Narrowband-friendly wideband networks. In SIGCOMM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee: Zero-effort crowdsourcing for indoor localization. In MobiCom, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In MobiCom, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. Sen, J. Yoon, J. Hare, J. Ormont, and S. Banerjee. Can they hear me now?: A case for a client-assisted approach to monitoring wide-area wireless networks. In IMC, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Shi, Z. Guan, C. Qiao, T. Melodia, D. Koutsonikolas, and G. Challen. Crowdsourcing access network spectrum allocation using smartphones. In HotNets, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. L. Shi, P. Bahl, and D. Katabi. Beyond sensing: Multi-GHz realtime spectrum analytics. In NSDI, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. L. Song, Y. Chen, W. Trappe, and L. Greenstein. ALDO: An anomaly detection framework for dynamic spectrum access networks. In INFOCOM, 2009.Google ScholarGoogle Scholar
  41. P. Sutton, K. Nolan, and L. Doyle. Cyclostationary signatures in practical cognitive radio applications. IEEE JSAC, 26(1):13--24, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. J. A. Wepman, B. L. Bedford, H. Ottke, and M. G. Cotton. RF sensors for spectrum monitoring applications: Fundamentals and RF performance test plan. NTIA Report 15-519, 2015.Google ScholarGoogle Scholar
  43. L. Yang, Z. Zhang, B. Y. Zhao, C. Kruegel, and H. Zheng. Enforcing dynamic spectrum access with spectrum permits. In MobiHoc, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan. Ecolocation: a sequence based technique for RF localization in wireless sensor networks. In IPSN, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. S. Yoon, E. Li, S. C. Liew, R. R. Choudhury, I. Rhee, and K. Tan. QuickSense: Fast and energy-efficient channel sensing for dynamic spectrum access networks. In INFOCOM, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  46. T. Zhang and S. Banerjee. Inaccurate spectrum databases?: Public transit to its rescue! In HotNets, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. T. Zhang, N. Leng, and S. Banerjee. A vehicle-based measurement framework for enhancing whitespace spectrum databases. In MobiCom, 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. T. Zhang, A. Patro, N. Leng, and S. Banerjee. A wireless spectrum analyzer in your pocket. In HotMobile, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Z. Zhang, L. Zhou, X. Zhao, G. Wang, Y. Su, M. Metzger, H. Zheng, and B. Y. Zhao. On the validity of geosocial mobility traces. In HotNets, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zhao, and H. Zheng. I am the antenna: accurate outdoor AP location using smartphones. In MobiCom, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SenSys '16: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM
    November 2016
    398 pages
    ISBN:9781450342636
    DOI:10.1145/2994551

    Copyright © 2016 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 14 November 2016

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate174of867submissions,20%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader