skip to main content
10.1145/2984511.2984522acmconferencesArticle/Chapter ViewAbstractPublication PagesuistConference Proceedingsconference-collections
research-article

EdgeVib: Effective Alphanumeric Character Output Using a Wrist-Worn Tactile Display

Authors Info & Claims
Published:16 October 2016Publication History

ABSTRACT

This paper presents EdgeVib, a system of spatiotemporal vibration patterns for delivering alphanumeric characters on wrist-worn vibrotactile displays. We first investigated spatiotemporal pattern delivery through a watch-back tactile display by performing a series of user studies. The results reveal that employing a 2×2 vibrotactile array is more effective than employing a 3×3 one, because the lower-resolution array creates clearer tactile sensations in less time consumption. We then deployed EdgeWrite patterns on a 2×2 vibrotactile array to determine any difficulties of delivering alphanumerical characters, and then modified the unistroke patterns into multistroke EdgeVib ones on the basis of the findings. The results of a 24-participant user study reveal that the recognition rates of the modified multistroke patterns were significantly higher than the original unistroke ones in both alphabet (85.9% vs. 70.7%) and digits (88.6% vs. 78.5%) delivery, and a further study indicated that the techniques can be generalized to deliver two-character compound messages with recognition rates higher than 83.3%. The guidelines derived from our study can be used for designing watch-back tactile displays for alphanumeric character output.

Skip Supplemental Material Section

Supplemental Material

p595-liao.mp4

mp4

204.3 MB

References

  1. Alvina, J., Zhao, S., Perrault, S. T., Azh, M., Roumen, T., and Fjeld, M. OmniVib: Towards cross-body spatiotemporal vibrotactile notifications for mobile phones. In Proc. ACM CHI '15 (2015), 2487--2496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bark, K., Wheeler, J. W., Premakumar, S., and Cutkosky, M. R. Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information. In Proc. IEEE HAPTICS '08 (2008), 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brewster, S., and Brown, L. M. Tactons: Structured tactile messages for non-visual information display. In Proc AUIC '04 (2004), 15--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brown, L. M., Brewster, S. A., and Purchase, H. C. Multidimensional tactons for non-visual information presentation in mobile devices. In Proc. ACM MobileHCI '06 (2006), 231--238. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Caswell, N. A., Yardley, R. T., Montandon, M. N., and Provancher, W. R. Design of a forearm-mounted directional skin stretch device. In Proc. IEEE HAPTICS '12 (2012), 365--370. Google ScholarGoogle ScholarCross RefCross Ref
  6. Chen, H. Y., Santos, J., Graves, M., Kim, K., and Tan, H. Z. Tactor localization at the wrist. In Proc. EuroHaptics '08 (2008), 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cholewiak, R. W., and Collins, A. A. Vibrotactile localization on the arm: Effects of place, space, and age. Perception & Psychophysics 65, 7 (2003). Google ScholarGoogle ScholarCross RefCross Ref
  8. Cody, F. W., Garside, R. A., Lloyd, D., and Poliakoff, E. Tactile spatial acuity varies with site and axis in the human upper limb. Neurosci. Lett. 433, 2 (2008), 103--108. Google ScholarGoogle ScholarCross RefCross Ref
  9. Geldard, F. A. Some neglected pssibilities of communication. Science 131, 3413 (1960). Google ScholarGoogle ScholarCross RefCross Ref
  10. Gibson, G., and Craig, J. C. Tactile spatial sensitivity and anisotropy. Perception & Psychophysics 67, 6 (2005). Google ScholarGoogle ScholarCross RefCross Ref
  11. Ion, A., Wang, E. J., and Baudisch, P. Skin drag displays: Dragging a physical tactor across the user's skin produces a stronger tactile stimulus than vibrotactile. In Proc. ACM CHI '15 (2015), 2501--2504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lee, J., Han, J., and Lee, G. Investigating the information transfer efficiency of a 3x3 watch-back tactile display. In Proc. ACM CHI '15 (2015), 1229--1232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lee, S. C., and Starner, T. Mobile gesture interaction using wearable tactile displays. In ACM CHI '09 EA (2009), 3437--3442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lee, S. C., and Starner, T. BuzzWear: Alert perception in wearable tactile displays on the wrist. In Proc. ACM CHI '10 (2010), 433--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Matscheko, M., Ferscha, A., Riener, A., and Lehner, M. Tactor placement in wrist worn wearables. In Proc. IEEE ISWC '10 (2010), 1--8. Google ScholarGoogle ScholarCross RefCross Ref
  16. Miller, G. A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63, 2 (1956). Google ScholarGoogle ScholarCross RefCross Ref
  17. Oakley, I., Kim, Y., Lee, J., and Ryu, J. Determining the feasibility of forearm mounted vibrotactile displays. In Proc. IEEE HAPTICS '06 (2006), 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pasquero, J., Stobbe, S. J., and Stonehouse, N. A haptic wristwatch for eyes-free interactions. In Proc. ACM CHI '11 (2011), 3257--3266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Roudaut, A., Rau, A., Sterz, C., Plauth, M., Lopes, P., and Baudisch, P. Gesture output: Eyes-free output using a force feedback touch surface. In Proc. ACM CHI '13 (2013), 2547--2556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Saket, B., Prasojo, C., Huang, Y., and Zhao, S. Designing an effective vibration-based notification interface for mobile phones. In Proc. ACM CSCW '13 (2013), 1499--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sofia, K. O., and Jones, L. Mechanical and psychophysical studies of surface wave propagation during vibrotactile stimulation. IEEE Trans. Haptics 6, 3 (2013), 320--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tan, H. Z., Durlach, N., Rabinowitz, W., Reed, C., and Santos, J. Reception of morse code through motional, vibrotactile and auditory stimulation. Perception & Psychophysics 59, 7 (1997). Google ScholarGoogle ScholarCross RefCross Ref
  23. Wobbrock, J., and Myers, B. Text input to handheld devices for people with physical disabilities. In Proc. HCII '05 (2005), 1962--1970.Google ScholarGoogle Scholar
  24. 2Wobbrock, J. O., Myers, B. A., and Kembel, J. A. EdgeWrite: A stylus-based text entry method designed for high accuracy and stability of motion. In Proc. ACM UIST '03 (2003), 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yanagida, Y., Kakita, M., Lindeman, R. W., Kume, Y., and Tetsutani, N. Vibrotactile letter reading using a low-resolution tactor array. In Proc. IEEE HAPTICS '04 (2004), 400--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Yatani, K., Banovic, N., and Truong, K. Spacesense: Representing geographical information to visually impaired people using spatial tactile feedback. In Proc. ACM CHI '12 (2012), 415--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yatani, K., and Truong, K. N. SemFeel: A user interface with semantic tactile feedback for mobile touch-screen devices. In Proc. ACM UIST '09 (2009), 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. EdgeVib: Effective Alphanumeric Character Output Using a Wrist-Worn Tactile Display

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UIST '16: Proceedings of the 29th Annual Symposium on User Interface Software and Technology
      October 2016
      908 pages
      ISBN:9781450341899
      DOI:10.1145/2984511

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 October 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      UIST '16 Paper Acceptance Rate79of384submissions,21%Overall Acceptance Rate842of3,967submissions,21%

      Upcoming Conference

      UIST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader