skip to main content
research-article

Interactive design of 3D-printable robotic creatures

Published:02 November 2015Publication History
Skip Abstract Section

Abstract

We present an interactive design system that allows casual users to quickly create 3D-printable robotic creatures. Our approach automates the tedious parts of the design process while providing ample room for customization of morphology, proportions, gait and motion style. The technical core of our framework is an efficient optimization-based solution that generates stable motions for legged robots of arbitrary designs. An intuitive set of editing tools allows the user to interactively explore the space of feasible designs and to study the relationship between morphological features and the resulting motions. Fabrication blueprints are generated automatically such that the robot designs can be manufactured using 3D-printing and off-the-shelf servo motors. We demonstrate the effectiveness of our solution by designing six robotic creatures with a variety of morphological features: two, four or five legs, point or area feet, actuated spines and different proportions. We validate the feasibility of the designs generated with our system through physics simulations and physically-fabricated prototypes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Auerbach, J., Aydin, D., Maesani, A., Kornatowski, P., Cieslewski, T., Heitz, G., Fernando, P., Loshchilov, I., Daler, L., and Floreano, D. 2014. RoboGen: Robot Generation through Artificial Evolution. In Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, The MIT Press, 136--137.Google ScholarGoogle Scholar
  2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. In Proc. of ACM SIGGRAPH '12.Google ScholarGoogle Scholar
  3. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-It: Optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 33, 4, 96:1--96:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Calì, J., Calian, D., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. In Proc. of ACM SIGGRAPH Asia '12.Google ScholarGoogle Scholar
  5. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. In Proc. of ACM SIGGRAPH Asia '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. In Proc. of ACM SIGGRAPH '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dimitrov, D., Wieber, P.-B., Ferreau, H., and Diehl, M. 2008. On the implementation of model predictive control for online walking pattern generation. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2685--2690.Google ScholarGoogle Scholar
  8. Gertz, E. M., and Wright, S. J. 2003. Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29, 1, 58--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. In Proc. of ACM SIGGRAPH '08. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., and Yokoi, K. H. K. 2003. Biped walking pattern generation by using preview control of zero-moment point. In in Proceedings of the IEEE International Conference on Robotics and Automation, 1620--1626.Google ScholarGoogle Scholar
  11. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics (Special issue of SIGGRAPH Asia 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Leger, P. C. 1999. Automated Synthesis and Optimization of Robot Configurations: An Evolutionary Approach. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lipson, H., and Pollack, J. B. 2000. Towards continuously reconfigurable self-designing robotics. In ICRA, IEEE, 1761--1766.Google ScholarGoogle Scholar
  15. Mastalli, C., Winkler, A., Havoutis, I., Caldwell, D. G., and Semini, C. 2015. On-line and on-board planning and perception for quadrupedal locomotion. In 2015 IEEE International Conference on Technologies for Practical Robot Applications (TEPRA), IEEE.Google ScholarGoogle Scholar
  16. Mehta, A. M., and Rus, D. 2014. An end-to-end system for designing mechanical structures for print-and-fold robots. In IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  17. Mehta, A. M., DelPreto, J., Shaya, B., and Rus, D. 2014. Cogeneration of mechanical, electrical, and software designs for printable robots from structural specifications. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google ScholarGoogle Scholar
  18. Mordatch, I., Todorov, E., and Popović, Z. 2012. Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31, 4 (July), 43:1--43:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Neuhaus, P., Pratt, J., and Johnson, M. 2011. Comprehensive summary of the institute for human and machine cognition's experience with littledog. International Journal Of Robotics Research 30, 2 (Feb.), 216--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. ODE, 2007. Open dynamics engine, http://www.ode.org/.Google ScholarGoogle Scholar
  21. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3d fabrication. In Proc. of ACM SIGGRAPH '13, 81:1--81:10.Google ScholarGoogle Scholar
  22. Sims, K. 1994. Evolving virtual creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '94, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. In Proc. of ACM SIGGRAPH '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. In Proc. of ACM SIGGRAPH '14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Umetani, N., Koyama, Y., Schmidt, R., and Igarashi, T. 2014. Pteromys: Interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33, 4 (July), 65:1--65:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. ACM Trans. Graph. 28, 3 (July), 60:1--60:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wampler, K., and Popović, Z. 2009. Optimal gait and form for animal locomotion. In ACM SIGGRAPH 2009 Papers, ACM, New York, NY, USA, SIGGRAPH '09, 60:1--60:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wampler, K., Popović, Z., and Popović, J. 2014. Generalizing locomotion style to new animals with inverse optimal regression. ACM Trans. Graph. 33, 4 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH '88, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia '12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive design of 3D-printable robotic creatures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 6
        November 2015
        944 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2816795
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 2 November 2015
        Published in tog Volume 34, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader