skip to main content
10.1145/2783258.2783291acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Dynamic Poisson Autoregression for Influenza-Like-Illness Case Count Prediction

Published:10 August 2015Publication History

ABSTRACT

Influenza-like-illness (ILI) is among of the most common diseases worldwide, and reliable forecasting of the same can have significant public health benefits. Recently, new forms of disease surveillance based upon digital data sources have been proposed and are continuing to attract attention over traditional surveillance methods. In this paper, we focus on short-term ILI case count prediction and develop a dynamic Poisson autoregressive model with exogenous inputs variables (DPARX) for flu forecasting. In this model, we allow the autoregressive model to change over time. In order to control the variation in the model, we construct a model similarity graph to specify the relationship between pairs of models at two time points and embed prior knowledge in terms of the structure of the graph. We formulate ILI case count forecasting as a convex optimization problem, whose objective balances the autoregressive loss and the model similarity regularization induced by the structure of the similarity graph. We then propose an efficient algorithm to solve this problem by block coordinate descent. We apply our model and the corresponding learning method on historical ILI records for 15 countries around the world using a variety of syndromic surveillance data sources. Our approach provides consistently better forecasting results than state-of-the-art models available for short-term ILI case count forecasting.

References

  1. U.S. Flu Forecasting 2014 - SciCast. https://scicast.org/flu. Last Accessed: 2015-02--20.Google ScholarGoogle Scholar
  2. A. Apolloni, V. A. Kumar, M. V. Marathe, and S. Swarup. Computational epidemiology in a connected world. Computer, 42(12):0083--86, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. T. Bahadori, Y. Liu, and E. P. Xing. Fast structure learning in generalized stochastic processes with latent factors. In Proceedings of KDD '13, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. R. Bisset, J. Chen, X. Feng, V. Kumar, and M. V. Marathe. Epifast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the ICS '09, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Chakraborty, P. Khadivi, B. Lewis, A. Mahendiran, J. Chen, P. Butler, E. O. Nsoesie, S. R. Mekaru, J. S. Brownstein, M. V. Marathe, and N. Ramakrishnan. Forecasting a moving target: Ensemble models for ILI case count predictions. In Proceedings of SDM '14, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Chen, D. Pavlov, and J. F. Canny. Large-scale behavioral targeting. In Proceedings of KDD '09, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Copeland, R. Romano, T. Zhang, G. Hecht, D. Zigmond, and C. Stefansen. Google disease trends: an update. Nature, 457:1012--1014, 2013.Google ScholarGoogle Scholar
  8. J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant. Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012--1014, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  9. K. S. Hickmann, G. Fairchild, R. Priedhorsky, N. Generous, J. M. Hyman, A. Deshpande, and S. Y. Del Valle. Forecasting the 2013--2014 influenza season using wikipedia. arXiv preprint arXiv:1410.7716, 2014.Google ScholarGoogle Scholar
  10. K. Lee, A.Agrawal, and A.Choudhary. Real-time disease surveillance using twitter data: demonstration on flu and cancer. In Proceedings of the KDD '13, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Liu, M. T. Bahadori, and H. Li. Sparse-gev: Sparse latent space model for multivariate extreme value time series modelling. In Proceedings of ICML '12, 2012.Google ScholarGoogle Scholar
  12. M. Marathe and A. K. S. Vullikanti. Computational epidemiology. Communications of the ACM, 56(7):88--96, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. E. Nsoesie, M. Mararthe, and J. Brownstein. Forecasting peaks of seasonal influenza epidemics. PLoS currents, 5, 2013.Google ScholarGoogle Scholar
  14. E. O. Nsoesie, D. L. Buckeridge, and J. S. Brownstein. Who's not coming to dinner? evaluating trends in online restaurant reservations for outbreak surveillance. Online Journal of Public Health Informatics, 5(1), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. H. Ohlsson, L. Ljung, and S. Boyd. Segmentation of arx-models using sum-of-norms regularization. Automatica, 46:1107--1111, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. J. Paul, M. Dredze, and D. Broniatowski. Twitter improves influenza forecasting. PLoS Currents, 6, 2014.Google ScholarGoogle Scholar
  17. J. Shaman, E. Goldstein, and M. Lipsitch. Absolute humidity and pandemic versus epidemic influenza. American journal of epidemiology, 173(2):127--135, 2010.Google ScholarGoogle Scholar
  18. J. Shaman and A. Karspeck. Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences, 109(50):20425--20430, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  19. J. Shaman, V. E. Pitzer, C. Viboud, B. T. Grenfell, and M. Lipsitch. Absolute humidity and the seasonal onset of influenza in the continental united states. PLoS biology, 8(2):e1000316, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. D. Tamerius, J. Shaman, W. J. Alonso, K. Bloom-Feshbach, C. K. Uejio, A. Comrie, and C. Viboud. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoSPathog, 9(3):68--72, 2013.Google ScholarGoogle Scholar
  21. M. Tizzoni, P. Bajardi, C. Poletto, J. J. Ramasco, D. Balcan, B. Gonçalves, N. Perra, V. Colizza, and A. Vespignani. Real-time numerical forecast of global epidemic spreading: case study of 2009 a/h1n1pdm. BMC medicine, 10(1):165, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. W. Yang, A. Karspeck, and J. Shaman. Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS computational biology, 10(4):e1003583, 2014.Google ScholarGoogle Scholar

Index Terms

  1. Dynamic Poisson Autoregression for Influenza-Like-Illness Case Count Prediction

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
      August 2015
      2378 pages
      ISBN:9781450336642
      DOI:10.1145/2783258

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 10 August 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '15 Paper Acceptance Rate160of819submissions,20%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader