skip to main content
10.1145/2582112.2582140acmotherconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
tutorial

Light spanners for Snowflake Metrics

Authors Info & Claims
Published:08 June 2014Publication History

ABSTRACT

A classic result in the study of spanners is the existence of light low-stretch spanners for Euclidean spaces. These spanners have arbitrary low stretch, and weight only a constant factor greater than that of the minimum spanning tree of the points (with dependence on the stretch and Euclidean dimension). A central open problem in this field asks whether other spaces admit low weight spanners as well -- for example metric space with low intrinsic dimension -- yet only a handful of results of this type are known.

In this paper, we consider snowflake metric spaces of low intrinsic dimension. The α-snowflake of a metric (X, δ) is the metric (X, δα), for 0 < α < 1. By utilizing an approach completely different than those used for Euclidean spaces, we demonstrate that snowflake metrics admit light spanners. Further, we show that the spanner is of diameter O(log n), a result not possible for Euclidean spaces. As an immediate corollary to our spanner, we obtain dramatic improvements in algorithms for the traveling salesman problem in this setting, achieving a polynomial-time approximation scheme with near-linear runtime. Along the way, we also show that all ℓp spaces admit light spanners, a result of interest in its own right.

References

  1. I. Abraham, Y. Bartal, and O. Neiman. Embedding metric spaces in their intrinsic dimension. In Proc. of 19th SODA, pages 363--372, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar spanners and approximate shortest path queries among obstacles in the plane. In Proc. of 4th ESA, pages 514--528. 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81--100, 1993. Google ScholarGoogle ScholarCross RefCross Ref
  4. S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. H. M. Smid. Euclidean spanners: short, thin, and lanky. In Proc. of 27th STOC, pages 489--498, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. S. Arya, D. M. Mount, and M. H. M. Smid. Randomized and deterministic algorithms for geometric spanners of small diameter. In Proc. of 35th FOCS, pages 703--712, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM, 45:753--782, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Arya and M. H. M. Smid. Efficient construction of a bounded degree spanner with low weight. Algorithmica, 17(1):33--54, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Assouad. Plongements lipschitziens dans Rn. Bull. Soc. Math. France, 111(4):429--448, 1983.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y. Bartal and L. Gottlieb. A linear time approximation scheme for euclidean tsp. In Proc. of 54th FOCS, pages 698--706, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Y. Bartal, L. Gottlieb, and R. Krauthgamer. The traveling salesman problem: low-dimensionality implies a polynomial time approximation scheme. In Proc. of 44th STOC, pages 663--672, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Y. Bartal, B. Recht, and L. J. Schulman. Dimensionality reduction: Beyond the johnson-lindenstrauss bound. In Proc. of 22nd SODA, pages 868--887. 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T.-H. H. Chan and A. Gupta. Small hop-diameter sparse spanners for doubling metrics. In Proc. of 17th SODA, pages 70--78, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T.-H. H. Chan, A. Gupta, B. M. Maggs, and S. Zhou. On hierarchical routing in doubling metrics. In Proc. of 16th SODA, pages 762--771, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T.-H. H. Chan, M. Li, L. Ning, and S. Solomon. New doubling spanners: Better and simpler. In Proc. of the 40th ICALP (1), pages 315--327, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. Dinitz, M. Elkin, and S. Solomon. Shallow-low-light trees, and tight lower bounds for Euclidean spanners. In Proc. of 49th FOCS, pages 519--528, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. E. D. Demaine, M. T. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decomposition. Combinatorica, 30(5):533--552, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. G. Das, P. J. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional Euclidean space. In Proc. of 9th SOCG, pages 53--62, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. M. Elkin and S. Solomon. Optimal Euclidean spanners: really short, thin and lanky. In Proc. of 45th STOC, pages 646--654, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. In Proc. of 20th SoCG, pages 190--199, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. M. Grigni and H. Hung. Light spanners in bounded pathwidth graphs. In Proc. of 37th MFCS, pages 467--477, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. L. Gottlieb and R. Krauthgamer. A nonlinear approach to dimension reduction. In Proc. of 22nd SODA, pages 888--899, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In Proc. of 44th FOCS, page 534?543, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. L. Gottlieb and L. Roditty. Improved algorithms for fully dynamic geometric spanners and geometric routing. In Proc. of 19th SODA, pages 591--600, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. Gottlieb and L. Roditty. An optimal dynamic spanner for doubling metric spaces. In Proc. of 16th ESA, pages 478--489, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput., 35(5):1148--1184, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. I. A. Kanj, L. PerkoviÄ&Gbreve;, and G. Xia. Computing lightweight spanners locally. In Prof. of 22nd Disc, pages 365--378. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. R. Lee, M. Mendel, and A. Naor. Metric structures in l1: Dimension, snowflakes, and average distortion. In Proc. of 4th LATIN, pages 401--412, 2004.Google ScholarGoogle Scholar
  28. O. Neiman. Low dimensional embedding of doubling metrics. In Proc. of 11th WAOA, 2013.Google ScholarGoogle Scholar
  29. A. Naor and O. Neiman. AssouadâĂ&Zacute;s theorem with dimension independent of the snowflaking. Revista Matematica Iberoamericana, 28(4):1--21, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  30. S. B. Rao and W. D. Smith. Approximating geometrical graphs via "spanners" and "banyans". In Proc. of 30th STOC, pages 540--550, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. H. M. Smid. The weak gap property in metric spaces of bounded doubling dimension. In Proc. of Efficient Algorithms, pages 275--289, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. S. Solomon. An optimal time construction of Euclidean sparse spanners with tiny diameter. In Proc. of 22nd SODA, pages 820--839, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. S. Solomon. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant spanners for doubling metrics. Tech. Report, CoRR abs/1304.8135, 2013.Google ScholarGoogle Scholar

Index Terms

  1. Light spanners for Snowflake Metrics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      SOCG'14: Proceedings of the thirtieth annual symposium on Computational geometry
      June 2014
      588 pages
      ISBN:9781450325943
      DOI:10.1145/2582112

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 June 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      SOCG'14 Paper Acceptance Rate60of175submissions,34%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader