skip to main content
10.1145/2506583.2506633acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
tutorial
Open Access

Topological properties of chromosome conformation graphs reflect spatial proximities within chromatin

Authors Info & Claims
Published:22 September 2013Publication History

ABSTRACT

Recent chromosome conformation capture (3C) experiments produce genome-wide networks of chromatin interactions to help to study how chromosome structures relate to genomic functions. We investigate whether properties of chromatin interaction graphs based on shortest paths, maximum flows, and dense cores correlate with the spatial proximity in a three-dimensional model of the yeast genome. We demonstrate that within automatically-detected dense subgraphs, which correspond to spatially compact cores of interacting chromatin, these properties are well-correlated with spatial volume. We show that all tested methods are able to identify spatially compact sets when the test sets contain fragments from several chromosomes. We use a framework for systematically evaluating whether a method can accurately assess the spatial enrichment of a set of genomic loci for a hypothesized biological function. In such regions, we observe that the sets of fragments contained in the maximum density subgraph overlap highly with the sets of fragments in the spatially compact cores. Further, we observe that all methods agree on the spatial closeness of the yeast genomic annotations. Together, we show that compared to the more computationally complex and expensive three-dimensional embedding approach, the topological features of 3C graphs can be used to directly detect spatial closeness.

References

  1. CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.Google ScholarGoogle Scholar
  2. D. Baù et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat. Struct. Mol. Biol., 18(1):107--114, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  3. S. Ben-Elazar, Z. Yakhini, and I. Yanai. Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome. Nucleic Acids Res., 41(4):2191--2201, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. Cournac, H. Marie-Nelly, M. Marbouty, R. Koszul, and J. Mozziconacci. Normalization of a chromosomal contact map. BMC Genomics, 13(1):436, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  5. Z. Dai and X. Dai. Nuclear colocalization of transcription factor target genes strengthens coregulation in yeast. Nucleic Acids Res., 40(1):27--36, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  6. E. de Wit and W. de Laat. A decade of 3C technologies: insights into nuclear organization. Genes Dev., 26(1):11--24, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398):376--380, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Dostie, T. A. Richmond, R. A. Arnaout, R. R. Selzer, W. L. Lee, T. A. Honan, E. D. Rubio, A. Krumm, J. Lamb, C. Nusbaum, R. D. Green, and J. Dekker. Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res., 16(10):1299--1309, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  9. Z. Duan et al. A three-dimensional model of the yeast genome. Nature, 465(7296):363--367, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  10. G. Duggal, R. Patro, E. Sefer, H. Wang, D. Filippova, S. Khuller, and C. Kingsford. Resolving spatial inconsistencies in chromosome conformation measurements. Alg. Mol. Biol., 8(1):8, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  11. G. Fudenberg, G. Getz, M. Meyerson, and L. A. Mirny. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat. Biotechnol., 29(12):1109--1113, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. V. Goldberg. Finding a maximum density subgraph. Technical report, CSD-84-171, Berkeley, CA, USA, 1984. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. R. E. Gomory and T. C. Hu. Multi-terminal network flows. J. Soc. Ind. Appl. Math., 9(4):pp. 551--570, 1961.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Hu, K. Deng, S. Selvaraj, Z. Qin, B. Ren, and J. S. Liu. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics, 28(23):3131--3133, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Imakaev, G. Fudenberg, R. P. McCord, N. Naumova, A. Goloborodko, B. R. Lajoie, J. Dekker, and L. A. Mirny. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nature Methods, 9(10):999--1003, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  16. R. Kalhor et al. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol., 30(1):90--98, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Kruse, S. Sewitz, and M. M. Babu. A complex network framework for unbiased statistical analyses of DNA--DNA contact maps. Nucleic Acids Res., 41(2):701--710, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  18. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950):289--293, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. P. McCord, A. Nazario-Toole, H. Zhang, P. S. Chines, Y. Zhan, M. R. Erdos, F. S. Collins, J. Dekker, and K. Cao. Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford Progeria syndrome. Genome Res., 23(2):260--269, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Paulsen, T. G. Lien, G. K. Sandve, L. Holden, O. Borgan, I. K. Glad, and E. Hovig. Handling realistic assumptions in hypothesis testing of 3D co-localization of genomic elements. Nucleic Acids Res., 2013.Google ScholarGoogle ScholarCross RefCross Ref
  21. T. Sexton et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148(3):458--472, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Simonis, P. Klous, E. Splinter, Y. Moshkin, R. Willemsen, E. De Wit, B. Van Steensel, and W. De Laat. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 38(11):1348--1354, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  23. H. Tanizawa et al. Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nuc. Acids Res., 38(22):8164--8177, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  24. H. Tjong, K. Gong, L. Chen, and F. Alber. Physical tethering and volume exclusion determine higher-order genome organization in budding yeast. Genome Res., 22(7):1295--1305, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. A. Umbarger et al. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol. Cell, 44(2):252--264, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  26. D. M. Witten and W. S. Noble. On the assessment of statistical significance of three-dimensional colocalization of sets of genomic elements. Nucleic Acids Res., 40(9):3849--3855, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  27. E. Yaffe and A. Tanay. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43(11):1059--1065, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  28. C. Zimmer and E. Fabre. Principles of chromosomal organization: lessons from yeast. J. Cell Biol., 192(5):723--733, 2011.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Topological properties of chromosome conformation graphs reflect spatial proximities within chromatin

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      BCB'13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics
      September 2013
      987 pages
      ISBN:9781450324342
      DOI:10.1145/2506583

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 22 September 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      BCB'13 Paper Acceptance Rate43of148submissions,29%Overall Acceptance Rate254of885submissions,29%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader