skip to main content
10.1145/2486084.2486088acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Reducing the number of flips in trilateration with noisy range measurements

Published:23 June 2013Publication History

ABSTRACT

Many applications in wireless networks depend on accurate localization services to operate properly. Trilateration is a widely used range-based localization method that can operate in polynomial time, given that the distance measurements are precise. However in real-world, range measurements tend to have errors due to internal and external factors. Flip ambiguities that occur during trilateration as a consequence of imprecise range measurements turn localization via trilateration into an intractable problem. In this paper, we analyze ip ambiguities due to range measurement errors and propose a heuristic solution that tries to minimize the number of ips in trilateration even in highly noisy environments. We simulate our algorithms under various noise scenarios and observe that the use of our heuristic based solution effectively decreases the number of ips in trilateration and increases the accuracy of the localization.

References

  1. H. Akcan and C. Evrendilek. GPS-free directional localization via dual wireless radios. Computer Communications, 35(9):1151--1163, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. H. Akcan, V. Kriakov, H. Brönnimann, and A. Delis. GPS-Free node localization in mobile wireless sensor networks. In Proceedings of the 5th ACM International Workshop on Data Engineering for Wireless and Mobile Access (MobiDE'06), pages 35--42, Chicago, Illinois, USA, June 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Akcan, V. Kriakov, H. Brönnimann, and A. Delis. Managing cohort movement of mobile sensors via GPS-free and compass-free node localization. Journal of Parallel and Distributed Computing, 70(7):743--757, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. B. D. O. Anderson, I. Shames, G. Mao, and B. Fidan. Formal theory of noisy sensor network localization. SIAM J. Discrete Math., 24(2):684--698, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur. A theory of network localization. IEEE Transactions on Mobile Computing, 5(12):1663--1678, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. Aspnes, D. K. Goldenberg, and Y. R. Yang. On the computational complexity of sensor network localization. In First International Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS'04), pages 32--44, Turku, Finland, July 2004.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro. Vehicular ad hoc networks: A new challenge for localization-based systems. Computer Communications, 31(12):2838--2849, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5):28--34, October 2000.Google ScholarGoogle Scholar
  9. M. Cao, B. D. O. Anderson, and A. S. Morse. Sensor network localization with imprecise distances. Systems & Control Letters, 55(11):887--893, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Čapkun, M. Hamdi, and J.-P. Hubaux. GPS-free Positioning in Mobile Ad Hoc Networks. Cluster Computing, 5(2):157--167, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics, 86(1--3):165--177, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. R. Connelly. Generic global rigidity. Discrete & Computational Geometry, 33(4):549--563, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. L. Doherty, K. Pister, and L. El Ghaoui. Convex position estimation in wireless sensor networks. In INFOCOM, pages 1655--1663, Anchorage, AK, USA, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Eren, O. Goldenberg, W. Whiteley, Y. Yang, A. Morse, B. Anderson, and P. Belhumeur. Rigidity, computation, and randomization in network localization. In INFOCOM, volume 4, pages 2673--2684, Hong Kong, China, March 2004.Google ScholarGoogle ScholarCross RefCross Ref
  15. C. Evrendilek and H. Akcan. On the complexity of trilateration with noisy range measurements. Communications Letters, IEEE, 15(10):1097--1099, October 2011.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor, and Z. Şahinoğlu. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. Signal Processing Magazine, IEEE, 22(4):70--84, July 2005.Google ScholarGoogle Scholar
  17. F. Gustafsson and F. Gunnarsson. Mobile positioning using wireless networks. IEEE Signal Processing Magazine, pages 41--53, 2005.Google ScholarGoogle Scholar
  18. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher. Range-free localization and its impact on large scale sensor networks. ACM Trans. Embedded Comput. Syst., 4(4):877--906, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Hightower and G. Borriello. Location systems for ubiquitous computing. IEEE Computer, 34(8):57--66, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. B. Huang, C. Yu, and B. Anderson. Understanding error propagation in multi-hop sensor network localization. IEEE Transactions on Industrial Electronics, 10.1109/TIE.2012.2236991, 2012.Google ScholarGoogle Scholar
  21. R. Iyengar and B. Sikdar. Scalable and distributed GPS free positioning for sensor networks. In Proceedings of the IEEE International Conference on Communications (ICC'03), pages 338--342, Anchorage, AK, USA, May 2003.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Liu, Y. Zhang, and F. Zhao. Robust distributed node localization with error management. In Proceedings of the 7th ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc'06), pages 250--261, Florence, Italy, May 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with noisy range measurements. In Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys'04), pages 50--61, Baltimore, MD, USA, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Nagpal, H. E. Shrobe, and J. Bachrach. Organizing a global coordinate system from local information on an ad hoc sensor network. In Proceedings of the 2nd International Conference on Information Processing In Sensor Networks (IPSN'03), pages 333--348, Palo Alto, California, USA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AOA. In INFOCOM, volume 3, pages 1734--1743, March 2003.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Park, E. D. Demaine, and S. J. Teller. Moving-baseline localization. In Proceedings of the 7th International Conference on Information Processing In Sensor Networks (IPSN'08), pages 15--26, St. Louis, Missouri, USA, April 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses, and N. S. Correal. Locating the nodes: cooperative localization in wireless sensor networks. Signal Processing Magazine, IEEE, 22(4):54--69, July 2005.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. Porretta, P. Nepa, G. Manara, and F. Giannetti. Location, location, location. IEEE Vehicular Technology Magazine, pages 20--29, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  29. N. B. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller. Anchor-free distributed localization in sensor networks. In Proceedings of the First International Conference on Embedded Networked Sensor Systems (SenSys'03), pages 340--341, Los Angeles, CA, USA, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Z. Şahinoğlu, S. Gezici, and I. Güvenç. Ultra-wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols. Cambridge University Press, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  31. C. Savarese, J. M. Rabaey, and K. Langendoen. Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In USENIX, pages 317--327, Monterey, CA, USA, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th annual International Conference on Mobile Computing and Networking (MobiCom'01), pages 166--179, New York, NY, USA, 2001. ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. B. Saxe. Embeddability of weighted graphs in k-space is strongly np-hard. In 17th Allerton Conf. Commun. Control Comput., pages 480--489, 1979.Google ScholarGoogle Scholar
  34. R. Sugihara and R. Gupta. Sensor localization with deterministic accuracy guarantee. In INFOCOM, 2011 Proceedings IEEE, pages 1772--1780, april 2011.Google ScholarGoogle ScholarCross RefCross Ref
  35. Y. Yemini. Some theoretical aspects of position-location problems. In 20th Annual Symposium on Foundations of Computer Science (FOCS), pages 1--8, San Juan, Puerto Rico, 1979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Zhang, S. Liu, X. Zhao, and Z. Jia. Theoretic analysis of unique localization for wireless sensor networks. Ad Hoc Networks, 10(3):623--634, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Reducing the number of flips in trilateration with noisy range measurements

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        MobiDE '13: Proceedings of the 12th International ACM Workshop on Data Engineering for Wireless and Mobile Acess
        June 2013
        48 pages
        ISBN:9781450321976
        DOI:10.1145/2486084

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 23 June 2013

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate23of59submissions,39%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader