skip to main content
research-article

Steady affine motions and morphs

Published:22 October 2011Publication History
Skip Abstract Section

Abstract

We propose to measure the quality of an affine motion by its steadiness, which we formulate as the inverse of its Average Relative Acceleration (ARA). Steady affine motions, for which ARA=0, include translations, rotations, screws, and the golden spiral. To facilitate the design of pleasing in-betweening motions that interpolate between an initial and a final pose (affine transformation), B and C, we propose the Steady Affine Morph (SAM), defined as AtB with A = CB-1. A SAM is affine-invariant and reversible. It preserves isometries (i.e., rigidity), similarities, and volume. Its velocity field is stationary both in the global and the local (moving) frames. Given a copy count, n, the series of uniformly sampled poses, Ai/nB, of a SAM form a regular pattern which may be easily controlled by changing B, C, or n, and where consecutive poses are related by the same affinity A1/n. Although a real matrix At does not always exist, we show that it does for a convex and large subset of orientation-preserving affinities A. Our fast and accurate Extraction of Affinity Roots (EAR) algorithm computes At, when it exists, using closed-form expressions in two or in three dimensions. We discuss SAM applications to pattern design and animation and to key-frame interpolation.

Skip Supplemental Material Section

Supplemental Material

tp176_12.mp4

mp4

20.7 MB

References

  1. Abdel-Malek, K., Blackmore, D., and Joy, K. 2006. Swept volumes: Foundations, perspectives, and applications. Int. J. Shape Model. 12, 1, 87--127.Google ScholarGoogle ScholarCross RefCross Ref
  2. Agoston, M. K. 2005. Computer Graphics and Geometric Modeling: Mathematics. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Alexa, M. 2002. Linear combination of transformations. In Proceedings of the SIGGRAPH Conference. J. Hughes, Ed., ACM Press/ACM SIGGRAPH, 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-Rigid-As-Possible shape interpolation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'00). ACM Press, New York, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alexander, C., Ishikawa, S., and Silverstein, M. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  6. Arnold, V. I. 1981. Ordinary Differential Equations. The MIT Press.Google ScholarGoogle Scholar
  7. Barr, A. H., Currin, B., Gabriel, S., and Hughes, J. F. 1992. Smooth interpolation of orientations with angular velocity constraints using quaternions. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'92). ACM Press, 313--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bregler, C., Loeb, L., Chuang, E., and Deshpande, H. 2002. Turning to the masters: Motion capturing cartoons. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'02). ACM, New York, 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Buss and Fillmore. 2001a. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Buss, S. R. and Fillmore, J. P. 2001b. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2, 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheng, S. H., Higham, N. J., Kenney, C. S., and Laub, A. J. 2000. Approximating the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl. 22, 4, 1112--1125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Choi, J. and Szymczak, A. 2003. On coherent rotation angles for as-rigid-as-possible shape interpolation. Tech. rep., Georgia Institute of Technology.Google ScholarGoogle Scholar
  13. Clifford, W. 1882. Mathematical Papers. Macmillan, London.Google ScholarGoogle Scholar
  14. Culver, W. C. 1966. On the existence and uniqueness of the real logarithm of a matrix. Proc. Amer. Math. Soc. 17, 5, 1146--1151.Google ScholarGoogle ScholarCross RefCross Ref
  15. Davies, P. I. and Higham, N. J. 2003. A schur-parlett algorithm for computing matrix functions. SIAM J. Matrix Anal. Appl. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Duff, T. 1986. Splines in animation and modeling. In SIGGRAPH Course Notes on State of the Art Image Synthesis. ACM Press.Google ScholarGoogle Scholar
  17. Eaton, J. W. J. W. 2000. GNU Octave: A High-Level Interactive Language for Numerical Computations Ed. 3, Octave version 2.0.13. Network Theory Ltd.Google ScholarGoogle Scholar
  18. Fu, H., Tai, C. L., and Au, O. K. 2005. Morphing with laplacian coordinates and spatial-temporal texture. In Proceedings of the Pacific Graphics'05 Conference. 100--102.Google ScholarGoogle Scholar
  19. Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations 3rd Ed. Johns Hopkins University Press, Baltimore, MD. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Grassia, F. S. 1998. Practical parameterization of rotations using the exponential map. J. Graph. Tools 3, 3, 29--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Higham, D. J. and Higham, N. J. 2005. MATLAB Guide. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Higham, N. J. 1986. Newton's method for the matrix square root. Math. Comp.. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hyun, D.-E., Jüttler, B., and Kim, M.-S. 2002. Minimizing the distortion of affine spline motions. In Graph. Models. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jang, J. and Rossignac, J. 2009. Octor: Subset selection in recursive pattern hierarchies. In Graphical Models. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Johnston, O. and Thomas, F. 1995. The Illusion of Life: Disney Animation. Disney Press.Google ScholarGoogle Scholar
  26. Kavan, L., Collins, S., O'Sullivan, C., and Žára, J. 2006. Dual quaternions for rigid transformation blending. Tech. rep. TCD-CS-2006-46, Trinity College, Dublin.Google ScholarGoogle Scholar
  27. Kavan, L., Collins, S., Žára, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4, 105:1--105:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kavan, L. and Žára, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D'05). ACM, New York, 9--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kim, B. and Rossignac, J. 2003. Collision prediction. J. Comput. Inf. Sci. Engin. 3, 4, 295--301.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kim, M.-J., Kim, M.-S., and Shin, S. Y. 1995. A general construction scheme for unit quaternion curves with simple high order derivatives. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'95). ACM Press, 369--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kim, M. S. and Nam, K. W. 1995. Interpolating solid orientations with circular blending quaternion curves. Comput. Aid. Des. 27, 385--398.Google ScholarGoogle ScholarCross RefCross Ref
  32. Larive, M. and Gaildrat, V. 2006. Wall grammar for building generation. In Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia (GRAPHITE'06). ACM, New York, 429--437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lee, J. and Shin, S. Y. 2002. General construction of time-domain filters for orientation data. IEEE Trans. Visualiz. Comput. Graph., 8, 2, 119--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Llamas, I., Kim, B., Gargus, J., Rossignac, J., and Shaw, C. D. 2003. Twister: A space-warp operator for the two-handed editing of 3D shapes. In Proceedings of ACM SIGGRAPH Conference, J. Hodgins and J. C. Hart, Eds. 663--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ma, L., Chan, T. K. Y., and Jiang, Z. 2000. Interpolating and approximating moving frames using B-splines. In Proceedings of the Pacific Conference on Computer Graphics and Applications. IEEE Computer Society, 154--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Meini, B. 2005. The matrix square root from a new functional perspective: Theoretical results and computational issues. SIAM J. Matrix Anal. Appl. 26, 2, 362--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mortenson, M. 2007. Geometric Transformations for 3D Modeling. Industrial Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. 2008. Discovering structural regularity in 3D geometry. ACM Trans. Graph. 27, 3, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Powell, A. and Rossignac, J. 2008. ScrewBender: Smoothing piecewise helical motions. IEEE Comput. Graph. Appl. 28, 1, 56--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Power, J. L., Brush, A. J. B., Prusinkiewicz, P., and Salesin, D. H. 1999. Interactive arrangement of botanical l-system models. In Proceedings of the Symposium on Interactive 3D Graphics (I3D'99). ACM, New York, 175--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Roberts, K. S., Bishop, G., and Ganapathy, S. K. 1988. Smooth interpolation of rotational matrices. In Proceedings of the Computer Vision and Pattern Recognition (CVPR'88). IEEE Computer Science Press, 724--729.Google ScholarGoogle Scholar
  42. Rossignac, J. and Kim, J. J. 2001. Computing and visualizing pose-interpolating 3D motions. Comput.-Aid. Des. 33, 4, 279--291.Google ScholarGoogle ScholarCross RefCross Ref
  43. Rossignac, J., Kim, J. J., Song, S. C., Suh, K. C., and Joung, C. B. 2007. Boundary of the volume swept by a free-form solid in screw motion. Comput.-Aid. Des. 39, 9, 745--755. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Rossignac, J. and Schaefer, S. 2008. J-splines. Comput.-Aid. Des. 40, 10-11, 1024--1032. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shoemake, K. 1985. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'85). ACM Press, 245--254. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Shoemake, K. 1987. Quaternion calculus and fast animation. In SIGGRAPH Course Notes on State of the Art Image Synthesis. ACM Press, 101--121.Google ScholarGoogle Scholar
  47. Shoemake, K. and Duff, T. 1992. Matrix animation and polar decomposition. In Proceedings of Graphics Interface Conference. Morgan Kaufmann Publishers, 258--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. van Emmerik, M., Rappoport, A., and Rossignac, J. 1993. Simplifying interactive design of solid models: A hypertext approach. Vis. Comput. 9, 5, 239--254.Google ScholarGoogle ScholarCross RefCross Ref
  49. Wang, W. and Joe, B. 1993. Orientation interpolation in quaternion space using spherical biarcs. In Proceedings of the Graphics Interface Conference. 24--32.Google ScholarGoogle Scholar
  50. Whited, B., Noris, G., Simmons, M., Sumner, R. W., Gross, M., and Rossignac, J. 2010. Betweenit: An interactive tool for tight inbetweening. Comput. Graph. Forum 29, 2, 605--614.Google ScholarGoogle ScholarCross RefCross Ref
  51. Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. 2003. Instant architecture. In ACM SIGGRAPH Papers. ACM, New York, 669--677. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Steady affine motions and morphs

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 30, Issue 5
        October 2011
        198 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2019627
        Issue’s Table of Contents

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 22 October 2011
        • Revised: 1 May 2011
        • Accepted: 1 May 2011
        • Received: 1 November 2009
        Published in tog Volume 30, Issue 5

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader