skip to main content
research-article

Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

Published:01 September 2010Publication History
Skip Abstract Section

Abstract

We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat nonnumerical values of the integrand, how they deal with improper divergent integrals, and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in MATLAB and tested using both the “families” suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.

References

  1. }}Bauer, F. L., Rutishauser, H., and Stiefel, E. 1963. New aspects in numerical quadrature. In Proceedings of the Experimental Arithmetic, High Speed Computing and Mathematics, N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Eds. American Mathematical Society, Providence, RI, 199--217.Google ScholarGoogle Scholar
  2. }}Berntsen, J. and Espelid, T. O. 1991. Error estimation in automatic quadrature routines. ACM Trans. Math. Softw. 17, 2, 233--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. }}Björck, Å . and Pereyra, V. 1970. Solution of Vandermonde systems of equations. Math. Comput. 24, 112, 893--903.Google ScholarGoogle Scholar
  4. }}Casaletto, J., Pickett, M., and Rice, J. 1969. A comparison of some numerical integration programs. SIGNUM Newslett. 4, 3, 30--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. }}Clenshaw, C. W. and Curtis, A. R. 1960. A method for numerical integration on an automatic computer. Numer. Math. 2, 197--205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. }}Davis, P. J. and Rabinowitz, P. 1984. Numerical Integration 2nd Ed. Blaisdell Publishing Company, Waltham, MA.Google ScholarGoogle Scholar
  7. }}de Boor, C. 1971. CADRE: An algorithm for numerical quadrature. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York, 201--209.Google ScholarGoogle Scholar
  8. }}de Doncker, E. 1978. An adaptive extrapolation algorithm for automatic integration. SIGNUM Newsl. 13, 2, 12--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. }}Eaton, J. W. 2002. GNU Octave Manual. Network Theory Limited.Google ScholarGoogle Scholar
  10. }}Espelid, T. O. 2007. Algorithm 868: Globally doubly adaptive quadrature---Reliable Matlab codes. ACM Trans. Math. Softw. 33, 3, 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. }}Favati, P., Lotti, G., and Romani, F. 1991. Interpolatory integration formulas for optimal composition. ACM Trans. Math. Softw. 17, 2, 207--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. }}Forsythe, G. E., Malcolm, M. A., and Moler, C. B. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, Inc., Englewood Cliffs, NJ 07632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. }}Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. 2009. GNU Scientific Library Reference Manual 3rd Ed. Network Theory Ltd. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. }}Gallaher, L. J. 1967. Algorithm 303: An adaptive quadrature procedure with random panel sizes. Comm. ACM 10, 6, 373--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. }}Gander, W. and Gautschi, W. 1998. Adaptive quadrature---Revisited. Tech. rep. 306, Department of Computer Science, ETH Zurich, Switzerland.Google ScholarGoogle Scholar
  16. }}Gander, W. and Gautschi, W. 2001. Adaptive quadrature---Revisited. BIT 40, 1, 84--101.Google ScholarGoogle ScholarCross RefCross Ref
  17. }}Gautschi, W. 1975. Norm estimates for inverses of Vandermonde matrices. Numer. Math. 23, 337--347.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. }}Gautschi, W. 1997. Numerical Analysis, An Introduction. Birkhäuser Verlag, Basel. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. }}Gentleman, W. M. 1972. Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation. Comm. ACM 15, 5, 343--346. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. }}Golub, G. H. and Welsch, J. H. 1969. Calculation of Gauss quadrature rules. Math. Comput. 23, 106, 221--230.Google ScholarGoogle Scholar
  21. }}Gonnet, P. G. 2009a. Adaptive quadrature re-revisited. Ph.D. thesis, ETH Zürich, Switzerland.Google ScholarGoogle Scholar
  22. }}Gonnet, P. G. 2009b. Efficient construction, update and downdate of the coefficients of interpolants based on polynomials satisfying a three-term recurrence relation. arxiv:1003.4628v2 {cs.NA}.Google ScholarGoogle Scholar
  23. }}Henriksson, S. 1961. Contribution no. 2: Simpson numerical integration with variable length of step. BIT Numer. Math. 1, 290.Google ScholarGoogle Scholar
  24. }}Higham, N. J. 1988. Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J. Numer. Anal. 8, 473--486.Google ScholarGoogle ScholarCross RefCross Ref
  25. }}Higham, N. J. 1990. Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11, 1, 23--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. }}Hillstrom, K. E. 1970. Comparison of several adaptive Newton-Cotes quadrature routines in evaluating definite integrals with peaked integrands. Comm. ACM 13, 6, 362--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. }}Kahaner, D. K. 1971. 5.15 Comparison of numerical quadrature formulas. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York and London, 229--259.Google ScholarGoogle Scholar
  28. }}Krommer, A. R. and Ü berhuber, C. W. 1998. Computational Integration. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  29. }}Kronrod, A. S. 1965. Nodes and Weights of Quadrature Formulas---Authorized Translation from the Russian. Consultants Bureau, New York.Google ScholarGoogle Scholar
  30. }}Kuncir, G. F. 1962. Algorithm 103: Simpson’s rule integrator. Comm. ACM 5, 6, 347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. }}Laurie, D. P. 1983. Sharper error estimates in adaptive quadrature. BIT 23, 258--261.Google ScholarGoogle ScholarCross RefCross Ref
  32. }}Laurie, D. P. 1992. Stratified sequences of nested quadrature formulas. Quaestiones Mathematicae 15, 364--384.Google ScholarGoogle ScholarCross RefCross Ref
  33. }}Lyness, J. N. 1970. Algorithm 379: SQUANK (Simpson quadrature used adaptively -- noise killed). Comm. ACM 13, 4, 260--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. }}Lyness, J. N. and Kaganove, J. J. 1977. A technique for comparing automatic quadrature routines. Comput. J. 20, 2, 170--177.Google ScholarGoogle ScholarCross RefCross Ref
  35. }}Malcolm, M. A. and Simpson, R. B. 1975. Local versus global strategies for adaptive quadrature. ACM Trans. Math. Softw. 1, 2, 129--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. }}McKeeman, W. M. 1962. Algorithm 145: Adaptive numerical integration by Simpson’s rule. Comm. ACM 5, 12, 604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. }}McKeeman, W. M. 1963. Algorithm 198: Adaptive integration and multiple integration. Comm. ACM 6, 8, 443--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. }}McKeeman, W. M. and Tesler, L. 1963. Algorithm 182: Nonrecursive adaptive integration. Comm. ACM 6, 6, 315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. }}Morrin, H. 1955. Integration subroutine -- Fixed point. Tech. rep. 701 Note #28, U.S. Naval Ordnance Test Station, China Lake, California.Google ScholarGoogle Scholar
  40. }}Ninham, B. W. 1966. Generalised functions and divergent integrals. Numer. Math. 8, 444--457.Google ScholarGoogle ScholarCross RefCross Ref
  41. }}Ninomiya, I. 1980. Improvements of adaptive Newton-Cotes quadrature methods. J. Inform. Porc. 3, 3, 162--170.Google ScholarGoogle Scholar
  42. }}O’Hara, H. and Smith, F. J. 1968. Error estimation in Clenshaw-Curtis quadrature formula. Comput. J. 11, 2, 213--219.Google ScholarGoogle ScholarCross RefCross Ref
  43. }}O’Hara, H. and Smith, F. J. 1969. The evaluation of definite integrals by interval subdivision. Comput. J. 12, 2, 179--182.Google ScholarGoogle ScholarCross RefCross Ref
  44. }}Oliver, J. 1972. A doubly-adaptive Clenshaw-Curtis quadrature method. Comput. J. 15, 2, 141--147.Google ScholarGoogle ScholarCross RefCross Ref
  45. }}Patterson, T. N. L. 1973. Algorithm 468: Algorithm for automatic numerical integration over a finite interval. Comm. ACM 16, 11, 694--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. }}Piessens, R. 1973. An algorithm for automatic integration. Angewandte Inf. 9, 399--401.Google ScholarGoogle Scholar
  47. }}Piessens, R., de Doncker-Kapenga, E., Überhuber, C. W., and Kahaner, D. K. 1983. QUADPACK A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  48. }}Ralston, A. and Rabinowitz, P. 1978. A First Course in Numerical Analysis. McGraw-Hill Inc., New York.Google ScholarGoogle Scholar
  49. }}Rice, J. R. 1975. A metalgorithm for adaptive quadrature. J. ACM 22, 1, 61--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. }}Robinson, I. 1979. A comparison of numerical integration programs. J. Comput. Appl. Math. 5, 3, 207--223.Google ScholarGoogle ScholarCross RefCross Ref
  51. }}Rowland, J. H. and Varol, Y. L. 1972. Exit criteria for Simpson’s compound rule. Math. Comput. 26, 119, 699--703.Google ScholarGoogle Scholar
  52. }}Rutishauser, H. 1976. Vorlesung über Numerische Mathematik. Birkhäuser Verlag, Basel.Google ScholarGoogle Scholar
  53. }}Schwarz, H. R. 1997. Numerische Mathematik. B. G. Teubner, Stuttgart.Google ScholarGoogle Scholar
  54. }}Stiefel, E. 1961. Einführung in Die Numerische Mathematik. B. G. Teubner Verlagsgesellschaft, Stuttgart.Google ScholarGoogle Scholar
  55. }}Sugiura, H. and Sakurai, T. 1989. On the construction of high-order integration formulae for the adaptive quadrature method. J. Comput. Appl. Math. 28, 367--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. }}The Mathworks. 2003. MATLAB 6.5 Release Notes. The Mathworks, Natick, MA.Google ScholarGoogle Scholar
  57. }}Trefethen, L. N. 2008. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 1, 67--87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. }}Venter, A. and Laurie, D. P. 2002. A doubly adaptive integration algorithm using stratified rules. BIT 42, 1, 183--193.Google ScholarGoogle ScholarCross RefCross Ref
  59. }}Villars, D. S. 1956. Use of the IBM 701 computer for quantum mechanical calculations II. overlap integral. Tech. rep. 5257, U.S. Naval Ordnance Test Station, China Lake, CA.Google ScholarGoogle Scholar
  60. }}Waldvogel, J. 2009. Towards a general error theory of the trapezoidal rule. In Approximation and Computation, W. Gautschi and G. Mastroianni and Th.M. Rassias, To appear. Preprint Eds. Springer. http://www.math.ethz.ch/waldvoge/Projects/nisJoerg.pdf.Google ScholarGoogle Scholar

Index Terms

  1. Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 37, Issue 3
        September 2010
        296 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/1824801
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 September 2010
        • Revised: 1 January 2010
        • Accepted: 1 January 2010
        • Received: 1 December 2008
        Published in toms Volume 37, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader