skip to main content
10.1145/1667239.1667262acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Visual algorithms for post production

Published:03 August 2009Publication History

ABSTRACT

The work of the visual algorithms community (for example the work of SIGGRAPH Technical Papers authors) frequently affects real-world film post production. But often academics in the relevant fields have little idea of the tools and algorithms actually involved in day-to-day post production. This course surveys a range of typical tools and algorithmic techniques currently used in post production and shows how some emerging technologies may change these techniques in the future. The course attempts to demystify some of the processes and jargon involved, both to enlighten an academic audience and inspire new contributions to the industry.

References

  1. A. Rares, M. J. T. Reinders, J. B. Complex event classification in degraded image sequences. In Proceedings of ICIP 2001 (IEEE), ISBN 0-7803-6727-8 (Thessaloniki, Greece, October 2001).Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Rares, M. J. T. Reinders, J. B. Statistical analysis of pathological motion areas. In The 2001 IEE Seminar on Digital Restoration of Film and Video Archives (London, UK, January 2001).Google ScholarGoogle Scholar
  3. A. Rares, M. J. T. Reinders, J. B. Image sequence restoration in the presence of pathological motion and severe artifacts. In Proceedings of ICASSP 2002 (IEEE) (Orlando, Florida, USA, May 2002).Google ScholarGoogle Scholar
  4. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. Image inpainting. In SIGGRAPH '00: Proceedings of the 27th annual conference on Computer graphics and interactive techniques (New York, NY, USA, 2000), pp. 417--424. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Black, M., and Anandan, P. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63 (January 1996), 75--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bornard, R. Probabilistic approaches for the digital restoration of television archives. PhD Thesis, Ecole Centrale, Paris, 2002.Google ScholarGoogle Scholar
  7. Buisson, O. Analyse de séquences d'images haute résolution, application à la restauration numérique de films cinématographiques. PhD thesis, Université de La Rochelle, France, December 1997.Google ScholarGoogle Scholar
  8. Buisson, O., Besserer, B., Boukir, S., and Helt, F. Deterioration detection for digital film restoration. In IEEE International Conference on Computer Vision and Pettern Recognition (June 1997), vol. 1, IEEE, pp. 78--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chuang, Y.-Y., Agarwala, A., Curless, B., Salesin, D. H., and Szeliski, R. Video matting of complex scenes. In Proceedings of ACM SIGGRAPH (2002). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. A bayesian approach to digital matting. In Proceedings of CVPR (2001).Google ScholarGoogle Scholar
  11. Corrigan, D., Harte, N., and Kokaram, A. Pathological Motion Detection for Robust Missing Data Treatment. EURASIP Journal on Advances in Signal Processing (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dufaux, F., and Konrad, J. Efficient, robust and fast global motion estimation for video coding. IEEE Transactions on Image Processing 9 (2000), 497--501. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Efros, A. A., and Leung, T. K. Texture synthesis by non-parametric sampling. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) (September 1999), vol. 2, pp. 1033--1038. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ferrandière, E. D. Motion picture restoration using morphological tools. Kluwer Academic Publishers, May 199, pp. 361--368.Google ScholarGoogle Scholar
  15. Ferrandière, E. D. Restauration automatique de films anciens. PhD thesis, Ecole des Mines de Paris, France, December 1997.Google ScholarGoogle Scholar
  16. Ferrandière, E. D. Mathematical morphology and motion picture restoration. John Wiley and Sons, New York, 2001.Google ScholarGoogle Scholar
  17. Ferrandière, E. D., and Serra, J. Detection of local defects in old motion pictures. In VII National Symposium on Pattern Recognition and Image Analysis (April 1997), pp. 145--150.Google ScholarGoogle Scholar
  18. Haan, G. D., and Bellers, E. Deinterlacing-an overview. In Proceedings of the IEEE (Sept 1998), vol. 86, no. 9, pp. 1839--1857.Google ScholarGoogle Scholar
  19. Hill, L., and Vlachos, T. On the estimation of of global motion using phase correlation for broadcasting applications. In Seventh International Conference on Image Processing and Its Applications (July 1999), vol. 2, pp. 721--725.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hill, L., and Vlachos, T. Global and local motion estimation using higher-order search. In 5th Meeting on Image Recognition and Understanding (MIRU 2000) (July 2000), vol. 1, pp. 18--21.Google ScholarGoogle Scholar
  21. Joyeux, L., Boukir, S., Besserer, B., and Buisson, O. Reconstruction of degraded image sequences. application to film restoration. Image and Vision Computing, 19 (2001), 503--516.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kent, B., Kokaram, A., Collis, B., and Robinson, S. Two layer segmentation for handling pathological motion in degraded post production media. In IEEE International Conference on Image Processing (October 2004), pp. 299--302.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ko, S.-J., Lee, S.-H., Jeon, S.-W., and Kang, E.-S. Fast digital image stabilizer based on gray-coded bit-plane matching. IEEE Transactions on Consumer Electronics 45, 3 (Aug. 1999), 598--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ko, S.-J., Lee, S.-H., and Lee, K.-H. Digital image stabilizing algorithms based on bitplane matching. IEEE Transactions on Consumer Electronics 44, 3 (Aug. 1998), 617--622. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kokaram, A. On missing data treatment for degraded video and film archives: a survey and a new bayesian approach. IEEE Transactions on Image Processing (March 2004), 397--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kokaram, A., Morris, R., Fitzgerald, W., and Rayner, P. Detection of missing data in image sequences. IEEE Image Processing (November 1995), 1496--1508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kokaram, A. C. Reconstruction of severely degraded image sequence. In Image Analysis and Processing (September 1997), vol. 2, Springer--Verlag, pp. 773--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kokaram, A. C. Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video. Springer Verlag, ISBN 3-540-76040-7, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kokaram, A. C. On missing data treatment for degraded video and film archives: a survey and a new bayesian approach. IEEE Transactions on Image Processing 13 (March 2004), 397--415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Konrad, J., and Dubois, E. Bayesian estimation of motion vector fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 9 (September 1992). Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Levin, A., Lischinski, D., and Weiss, Y. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (2008), 228--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Manhall, S., and Harvey, N. Film and video archive restoration using mathematical morphology. In IEE Seminar on Digital Restoration of Film and Video Archives (Ref. No. 2001/049) (January 2001), pp. 9/1--9/5.Google ScholarGoogle Scholar
  33. Mansouri, A., and Konrad, J. Bayesian winner-take-all reconstruction of intermediate views from stereoscopic images. IEEE Image Processing 9, 10 (October 2000), 1710--1722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Nadenau, M. J., and Mitra, S. K. Blotch and scratch detection in image sequences based on rank ordered differences. In 5th International Workshop on Time-Varying Image Processing and Moving Object Recognition (September 1996).Google ScholarGoogle Scholar
  35. Odobez, J.-M., and Bouthémy, P. Robust multiresolution estimation of parametric motion models. Journal of visual communication and image representation 6 (1995), 348--365.Google ScholarGoogle Scholar
  36. O. J. Woodford, and and A. W. Fitzgibbon, I. R. Efficient new-view synthesis using pairwise dictionary priors. In IEEE International Conference on Computer Vision and Pattern Recognition (June 2007), pp. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  37. Paisan, F., and Crise, A. Restoration of signals degraded by impulsive noise by means of a low distortion, non--linear filter. Signal Processing 6 (1984), 67--76.Google ScholarGoogle ScholarCross RefCross Ref
  38. Piti, F., Kokaram, A., and Dahyot, R. Automated colour grading using colour distribution transfer. Journal of Computer Vision and Image Understanding (February 2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Porter, T., and Duff, T. Compositing digital images. In Proceedings of ACM SIGGRAPH (1984), vol. 18, pp. 253--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Prez, P., Blake, A., and Gangnet, M. Jetstream: Probabilistic contour extraction with particles. In ICCV 2001, International Conference on Computer Vision (July 2001), vol. II, pp. 524--531.Google ScholarGoogle ScholarCross RefCross Ref
  41. Qi, W., and Zhong, Y. New robust global motion estimation approach used in mpeg-4. Journal of Tsinghua University Science and Technology (2001).Google ScholarGoogle Scholar
  42. Ratakonda, K. Real-time digital video stabilization for multimedia applications. In Proceedings International Symposium on Circuits and Systems (Monterey, CA, USA, May 1998), vol. 4, IEEE, pp. 69--72.Google ScholarGoogle Scholar
  43. Read, P., and Meyer, M.-P. Restoration of Motion Picture Film. Butterworth Heinemann, ISBN 0-7506-2793-X, 2000.Google ScholarGoogle Scholar
  44. Roosmalen, P. M. B. V., Lagendijk, R. L., and Biemond, J. Correction of intensity flicker in old film sequences. Submitted to: IEEE Transactions on Circuits and Systems for Video Technology (December 1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Roosmalen, P. M. B. V., Lagendijk, R. L., and Biemond, J. Flicker reduction in old film sequences. In Time-varying Image Processing and Moving Object Recognition 4 (1997), Elsevier Science, pp. 9--17.Google ScholarGoogle ScholarCross RefCross Ref
  46. S. Armstrong, P. J. W. R., and Kokaram, A. C. Restoring video images taken from scratched 2-inch tape. In Workshop on Non-Linear Model Based Image Analysis, NMBIA'98; Eds: Stephen Marshall, Neal Harvey and Druti Shah (September 1998), Springer Verlag, pp. 83--88.Google ScholarGoogle ScholarCross RefCross Ref
  47. Sadhar, S., and Rajagopalan, A. N. Image estimation in film-grain noise. IEEE Signal Processing Letters 12 (March 2005), 238--241.Google ScholarGoogle ScholarCross RefCross Ref
  48. Saito, T., Komatsu, T., Ohuchi, T., and Seto, T. Image processing for restoration of heavily-corrupted old film sequences. In International Conference on Pattern Recognition 2000 (2000), pp. Vol III: 17--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Scharstein, D., and Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision 47 (April 2002), 7--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sidorov, D., and Kokaram, A. Suppression of moiré patterns via spectral analysis. In SPIE Conference on Visual Communications and Image Processing (January 2002), vol. 4671, pp. 895--906.Google ScholarGoogle ScholarCross RefCross Ref
  51. Sidorov, D. N., and Kokaram, A. C. Removing moir from degraded video archives. In XIth European Conference in Signal Processing (EUSIPCO 2002) (September 2002).Google ScholarGoogle Scholar
  52. Smolic, A., and Ohm, J.-R. Robust global motion estimation using a simplified m-estimator approach. In IEEE International Conference on Image Processing (Vancouver, Canada, September 2000).Google ScholarGoogle ScholarCross RefCross Ref
  53. Stiller, C. Motion--estimation for coding of moving video at 8kbit/sec with gibbs modelled vectorfield smoothing. In SPIE VCIP. (1990), vol. 1360, pp. 468--476.Google ScholarGoogle Scholar
  54. Storey, R. Electronic detection and concealment of film dirt. UK Patent Specification No. 2139039 (1984).Google ScholarGoogle Scholar
  55. Storey, R. Electronic detection and concealment of film dirt. SMPTE Journal (June 1985), 642--647.Google ScholarGoogle Scholar
  56. Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. Poisson matting. ACM Transactions on Graphics 23, 3 (2004). Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Tenze, L., Ramponi, G., and Carrato, S. Blotches correction and contrast enhancement for old film pictures. In IEEE International Conference on Image Processing (2000), p. TP06.05.Google ScholarGoogle ScholarCross RefCross Ref
  58. Tenze, L., Ramponi, G., and Carrato, S. Robust detection and correction of blotches in old films using spatio-temporal information. In Proceedings of SPIE International Symposium of Electronic Imaging 2002 (January 2002).Google ScholarGoogle ScholarCross RefCross Ref
  59. Tucker, J., and de Sam Lazaro, A. Image stabilization for a camera on a moving platform. In Proc. of the IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing (May 1993), vol. 2, pp. 734--737.Google ScholarGoogle ScholarCross RefCross Ref
  60. Uomori, K., Morimura, A., Ishii, H., Sakaguchi, T., and Kitamura, Y. Automatic image stabilizing system by full-digital signal processing. IEEE Transactions on Consumer Electronics 36, 3 (Aug. 1990), 510--519.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Vlachos, T. Simple method for estimation of global motion parameters using sparse translational motion vector fields. Electronics Letters 34, 1 (January 1998), 60--62.Google ScholarGoogle ScholarCross RefCross Ref
  62. Vlachos, T., and Thomas, G. A. Motion estimation for the correction of twin-lens telecine flicker. In IEEE International Conference on Image Processing (September 1996), vol. 1, pp. 109--112.Google ScholarGoogle ScholarCross RefCross Ref
  63. White, P., Collis, B., Robinson, S., and Kokaram, A. Inference matting. In IEE European Conference on Visual Media Production (November 2005), pp. 161--171.Google ScholarGoogle Scholar

Index Terms

  1. Visual algorithms for post production

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SIGGRAPH '09: ACM SIGGRAPH 2009 Courses
          August 2009
          4249 pages
          ISBN:9781450379380
          DOI:10.1145/1667239

          Copyright © 2009 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 August 2009

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate1,822of8,601submissions,21%

          Upcoming Conference

          SIGGRAPH '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader