skip to main content
research-article

Randomized minimum spanning tree algorithms using exponentially fewer random bits

Published:28 March 2008Publication History
Skip Abstract Section

Abstract

For many fundamental problems there exist randomized algorithms that are asymptotically optimal and are superior to the best-known deterministic algorithm. Among these are the minimum spanning tree (MST) problem, the MST sensitivity analysis problem, the parallel connected components and parallel minimum spanning tree problems, and the local sorting and set maxima problems. (For the first two problems there are provably optimal deterministic algorithms with unknown, and possibly superlinear, running times.) One downside of the randomized methods for solving these problems is that they use a number of random bits linear in the size of input. In this article we develop some general methods for reducing exponentially the consumption of random bits in comparison-based algorithms. In some cases we are able to reduce the number of random bits from linear to nearly constant, without affecting the expected running time.

Most of our results are obtained by adjusting or reorganizing existing randomized algorithms to work well with a pairwise or O(1)-wise independent sampler. The prominent exception, and the main focus of this article, is a linear-time randomized minimum spanning tree algorithm that is not derived from the well-known Karger-Klein-Tarjan algorithm. In many ways it resembles more closely the deterministic minimum spanning tree algorithms based on soft heaps. Further, using our algorithm as a guide, we present a unified view of the existing “nongreedy” minimum spanning tree algorithms. Concepts from the Karger-Klein-Tarjan algorithm, such as F-lightness, MST verification, and sampled graphs, are related to the concepts of edge corruption, subgraph contractibility, and soft heaps, which are the basis of the deterministic MST algorithms of Chazelle and Pettie-Ramachandran.

References

  1. Ajtai, M., Komlós, J., and Szemerédi, E. 1987. Deterministic simulation in Logspace. In Proceedings of the Annual ACM Symposium on the Theory of Computation (STOC), 132--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bach, E., and Shallit, J. 1996. Algorithmic Number Theory. The MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bar-Noy, A., Motwani, R., and Naor, J. 1992. A linear time approach to the set maxima problem. SIAM J. Discr. Math. 5, 1, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blum, M., Floyd, R. W., Pratt, V., Rivest, R. L., and Tarjan, R. E. 1973. Time bounds for selection. J. Comput. Syst. Sci. 7, 4, 448--461.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Borůvka, O. 1926. O jistém problému minimálním. Práce Moravské Přírodovědecké Společnosti 3, 37--58. In Czech.Google ScholarGoogle Scholar
  6. Buchsbaum, A. L., Kaplan, H., Rogers, A., and Westbrook, J. R. 1998. Linear-Time pointer-machine algorithms for LCAs, MST verification, and dominators. In Proceedings of the 30th ACM Symposium on Theory of Computing (STOC), 279--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chazelle, B. 2000a. A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. ACM 47, 6, 1028--1047. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chazelle, B. 2000b. The soft heap: An approximate priority queue with optimal error rate. J. ACM 47, 6, 1012--1027. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chong, K. W., Han, Y., and Lam, T. W. 2001. Concurrent threads and optimal parallel minimum spanning trees algorithm. J. ACM 48, 2, 297--323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cohen, A., and Wigderson, A. 1989. Dispersers, deterministic amplification, and weak random sources. In Proceedings of the 30th Symposium on Foundations of Computer Science (FOCS), 14--25.Google ScholarGoogle Scholar
  11. Cole, R. 1999. Personal communication.Google ScholarGoogle Scholar
  12. Cole, R., Klein, P. N., and Tarjan, R. E. 1996. Finding minimum spanning forests in logarithmic time and linear work using random sampling. In Proceedings of the Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 243--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cole, R., and Vishkin, U. 1986. Approximate and exact parallel scheduling with applications to list, tree, and graph problems. In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS), 478--491.Google ScholarGoogle Scholar
  14. Cole, R. and Vishkin, U. 1991. Approximate parallel scheduling. II. Applications to logarithmic-time optimal parallel graph algorithms. Inf. Comput. 92, 1, 1--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cunto, W., and Munro, J. I. 1989. Average case selection. J. ACM 36, 2, 270--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269--271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dixon, B., Rauch, M., and Tarjan, R. E. 1992. Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J. Comput. 21, 6, 1184--1192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Dor, D., and Zwick, U. 2001. Median selection requires (2 + ε)n comparisons. SIAM J. Discr. Math. 14, 3, 312--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Dor, D., and Zwick, U. 1999. Selecting the median. SIAM J. Comput. 28, 5, 1722--1758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Floyd, R., and Rivest, R. 1975. Expected time bounds for selection. Commun. ACM 18, 3, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gabow, H. N., Galil, Z., and Spencer, T. H. 1989. Efficient implementation of graph algorithms using contraction. J. ACM 36, 3, 540--572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gabow, H. N., Galil, Z., Spencer, T. H., and Tarjan, R. E. 1986. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gazit, H. 1991. An optimal randomized parallel algorithm for finding connected components in a graph. SIAM J. Comput. 20, 6, 1046--1067. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Goddard, W., Kenyon, C., King, V., and Schulman, L. 1993. Optimal randomized algorithms for local sorting and set-maxima. SIAM J. Comput. 22, 2, 272--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Graham, R. L. and Hell, P. 1985. On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7, 1, 43--57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Graham, R. L., Yao, A. C., and Yao, F. F. 1980. Information bounds are weak in the shortest distance problem. J. ACM 27, 3, 428--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Halperin, S., and Zwick, U. 1996. An optimal randomised logarithmic time connectivity algorithm for the EREW PRAM. J. Comput. Syst. Sci. 53, 3, 395--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Halperin, S., and Zwick, U. 2001. Optimal randomized EREW PRAM algorithms for finding spanning forests. J. Algor. 39, 1, 1--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Impagliazzo, R., and Zuckerman, D. 1989. How to recycle random bits. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), 248--253.Google ScholarGoogle Scholar
  31. Jarník, V. 1930. O jistém problému minimálním. Práca Moravské P&rbreve;írodovĕdecké Spole&cbreve;nosti 6, 57--63. In Czech.Google ScholarGoogle Scholar
  32. Joffe, A. 1974. On a set of almost deterministic k-independent random variables. Ann. Probab. 2, 1, 161--162.Google ScholarGoogle ScholarCross RefCross Ref
  33. Karger, D. R. 1993. Random sampling in matroids, with applications to graph connectivity and minimum spanning trees. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science (FOCS), 84--93.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Karger, D. R., Klein, P. N., and Tarjan, R. E. 1995. A randomized linear-time algorithm for finding minimum spanning trees. J. ACM 42, 321--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Karp, R. M., and Ramachandran, V. 1990. Parallel algorithms for shared-memory machines. In Handbook of Computer Science. MIT Press/Elsevier, 869--942. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kenyon-Mathieu, C., and King, V. 1989. Verifying partial orders. In Proceedings of the Annual ACM Symposium on Theory of Computing (STOC), 367--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. King, V. 1997. A simpler minimum spanning tree verification algorithm. Algorithmica 18, 2, 263--270.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. King, V., Poon, C. K., Ramachandran, V., and Sinha, S. 1997. An optimal EREW PRAM algorithm for minimum spanning tree verification. Info. Proc. Lett. 62, 3, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Komlós, J. 1985. Linear verification for spanning trees. Combinatorica 5, 1, 57--65.Google ScholarGoogle ScholarCross RefCross Ref
  40. Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. In Proceedings of the American Mathematical Society, vol. 7, 48--50.Google ScholarGoogle ScholarCross RefCross Ref
  41. Liberatore, V. 1998. Matroid decomposition methods for the set maxima problem. In Proceedings of the Annual ACM/SIAM Symposium on Discrete Algorithm (SODA), 400--409. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Miller, G. L. 1976. Riemann's hypothesis and tests for primality. J. Comput. Syst. Sci. 13, 3, 300--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Motwani, R., and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Paterson, A. S. M. S., and Pippenger, N. 1976. Finding the median. J. Comput. Syst. Sci. 13, 184--199.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Pettie, S. 2005. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In Proceedings of the 16th International Symposium on Algorithms and Computation (ISAAC), 964--973. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Pettie, S. 2003. On the shortest path and minimum spanning tree-problems. Ph.D. thesis, The University of Texas at Austin. Also Tech. Rep. TR-03-35, Department of Computer Sciences. http://www.cs.utexas.edu/ftp/pub/techreports/tr03-35.ps.gz. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Pettie, S. 1999. Finding minimum spanning trees in O(mα(m, n)) time. Tech. Rep. CS-TR-99-23, University of Texas, Austin. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pettie, S., and Ramachandran, V. 2002a. Minimizing randomness in minimum spanning tree, parallel connectivity and set maxima algorithms. In Proceedings of the 13th Annual ACM/SIAM Symposium on Discrete Algorithms (SODA), 713--722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Pettie, S., and Ramachandran, V. 2002b. An optimal minimum spanning tree algorithm. J. ACM 49, 1, 16--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Pettie, S., and Ramachandran, V. 2002c. A randomized time-work optimal parallel algorithm for finding a minimum spanning forest. SIAM J. Comput. 31, 6, 1879--1895. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Prim, R. C. 1957. Shortest connection networks and some generalizations. Bell Syst. Tech. J., 1389--1401.Google ScholarGoogle Scholar
  52. Rabin, M. O. 1980. Probabilistic algorithm for testing primality. J. Number Theory 12, 1, 128--138.Google ScholarGoogle ScholarCross RefCross Ref
  53. Schmidt, J. P., Siegel, A., and Srinivasan, A. 1995. Chernoff-Hoeffding bounds for applications with limited independence. SIAM J. Discr. Math. 8, 2, 223--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Tarjan, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path problems. Inf. Proc. Lett. 14, 1, 30--33. See Corrigendum, IPL 23, 4, 219.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Randomized minimum spanning tree algorithms using exponentially fewer random bits

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Algorithms
        ACM Transactions on Algorithms  Volume 4, Issue 1
        March 2008
        343 pages
        ISSN:1549-6325
        EISSN:1549-6333
        DOI:10.1145/1328911
        Issue’s Table of Contents

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 March 2008
        • Accepted: 1 July 2007
        • Revised: 1 April 2007
        • Received: 1 January 2005
        Published in talg Volume 4, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader