skip to main content
10.1145/3366423.3380246acmconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Adaptive Low-level Storage of Very Large Knowledge Graphs

Published:20 April 2020Publication History

ABSTRACT

The increasing availability and usage of Knowledge Graphs (KGs) on the Web calls for scalable and general-purpose solutions to store this type of data structures. We propose Trident, a novel storage architecture for very large KGs on centralized systems. Trident uses several interlinked data structures to provide fast access to nodes and edges, with the physical storage changing depending on the topology of the graph to reduce the memory footprint. In contrast to single architectures designed for single tasks, our approach offers an interface with few low-level and general-purpose primitives that can be used to implement tasks like SPARQL query answering, reasoning, or graph analytics. Our experiments show that Trident can handle graphs with 1011 edges using inexpensive hardware, delivering competitive performance on multiple workloads.

References

  1. Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compression and Execution in Column-Oriented Database Systems. In Proceedings of SIGMOD. ACM, New York, NY, USA, 671–682.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. 2009. SW-Store: a vertically partitioned DBMS for Semantic Web data management. The VLDB Journal 18, 2 (2009), 385–406.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. 2017. A Survey and Experimental Comparison of Distributed SPARQL Engines for Very Large RDF Data. PVLDB 10, 13 (2017), 2049–2060.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. I. Abdelaziz, R. Harbi, S. Salihoglu, and P. Kalnis. 2017. Combining vertex-centric graph processing with SPARQL for large-scale RDF data analytics. IEEE Transactions on Parallel and Distributed Systems 28, 12 (2017), 3374–3388.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Günes Aluç, M. Tamer Özsu, Khuzaima Daudjee, and Olaf Hartig. 2015. Executing queries over schemaless RDF databases. In Proceedings of ICDE. IEEE, Seoul, South Korea, 807–818.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bernd Amann, Olivier Curé, and Hubert Naacke. 2018. Distributed SPARQL Query Processing: a Case Study with Apache Spark. John Wiley & Sons, Ltd, Hoboken, NJ, USA, Chapter 2, 21–55.Google ScholarGoogle Scholar
  7. Grigoris Antoniou, Sotiris Batsakis, Raghava Mutharaju, Jeff Z. Pan, Guilin Qi, Ilias Tachmazidis, Jacopo Urbani, and Zhangquan Zhou. 2018. A survey of large-scale reasoning on the Web of data. The Knowledge Engineering Review 33 (2018), 1–43.Google ScholarGoogle ScholarCross RefCross Ref
  8. Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler. 2010. Matrix ”Bit” Loaded: A Scalable Lightweight Join Query Processor for RDF Data. In Proceedings of WWW. ACM, New York, NY, USA, 41–50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. A. Azzam, S. Kirrane, and A. Polleres. 2018. Towards Making Distributed RDF Processing FLINKer. In 2018 4th International Conference on Big Data Innovations and Applications (Innovate-Data). IEEE, Los Alamitos, CA, USA, 9–16.Google ScholarGoogle Scholar
  10. Liu Baolin and Hu Bo. 2007. HPRD: A High Performance RDF Database. In Proceedings of NPC. Springer, Cham, Switzerland, 364–374.Google ScholarGoogle Scholar
  11. David Beckett. 2001. The Design and Implementation of the Redland RDF Application Framework. In Proceedings of WWW. ACM, New York, NY, USA, 449–456.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko Tashev, and Ruslan Velkov. 2011. OWLIM: A family of scalable semantic repositories. Semantic Web 2, 1 (2011), 33–42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and Sebastian Hellmann. 2009. DBpedia-A crystallization point for the Web of Data. Web Semantics: science, services and agents on the world wide web 7, 3(2009), 154–165.Google ScholarGoogle Scholar
  14. Roi Blanco, Berkant Barla Cambazoglu, Peter Mika, and Nicolas Torzec. 2013. Entity Recommendations in Web Search. In Proceedings of ISWC. Springer, Heidelberg, Germany, 33–48.Google ScholarGoogle Scholar
  15. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational Data. In Proceedings of NIPS. NIPS Proceedings, Lake Tahoe, NV, USA, 2787–2795.Google ScholarGoogle Scholar
  16. Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. 2013. Building an Efficient RDF Store over a Relational Database. In Proceedings of SIGMOD. ACM, New York, NY, USA, 121–132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Alison Callahan, José Cruz-Toledo, Peter Ansell, and Michel Dumontier. 2013. Bio2RDF Release 2: Improved Coverage, Interoperability and Provenance of Life Science Linked Data. In Proceedings of ESWC. Springer, Heidelberg, Germany, 200–212.Google ScholarGoogle Scholar
  18. Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. 2015. One Trillion Edges: Graph Processing at Facebook-Scale. PVLDB 8, 12 (2015), 1804–1815.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan Srinivasan. 2005. An Efficient SQL-Based RDF Querying Scheme. In Proceedings of VLDB. VLDB Endowment, Trondheim, Norway, 1216–1227.Google ScholarGoogle Scholar
  20. DATASTAX, Inc.2019. Titan: Distributed Graph Database. http://titan.thinkaurelius.com/Google ScholarGoogle Scholar
  21. Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M. Patel. 2015. The Case Against Specialized Graph Analytics Engines. In Proceedings of CIDR. www.cidrdb.org, Asilomar, CA, USA.Google ScholarGoogle Scholar
  22. David C. Faye, Olivier Curé, and Guillaume Blin. 2011. A survey of RDF storage approaches. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées 15(2011), 11–35.Google ScholarGoogle Scholar
  23. Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres, and Mario Arias. 2013. Binary RDF representation for publication and exchange (HDT). Web Semantics: Science, Services and Agents on the World Wide Web 19 (2013), 22–41.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. George H.L. Fletcher and Peter W. Beck. 2009. Scalable Indexing of RDF Graphs for Efficient Join Processing. In Proceedings of CIKM. ACM, New York, NY, USA, 1513–1516.Google ScholarGoogle Scholar
  25. Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In Proceedings of OSDI. USENIX, Hollywood, CA, USA, 17–30.Google ScholarGoogle Scholar
  26. Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed Dataflow Framework. In Proceedings of OSDI. USENIX, Broomfield, CO, USA, 599–613.Google ScholarGoogle Scholar
  27. Jim Gray. 1981. The Transaction Concept: Virtues and Limitations (Invited Paper). In Proceedings of VLDB. VLDB Endowment, Cannes, France, 144–154.Google ScholarGoogle Scholar
  28. Mark Greaves and Peter Mika. 2008. Semantic Web and Web 2.0. Web Semantics: Science, Services and Agents on the World Wide Web 6, 1(2008), 1–3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Guha, Rob McCool, and Eric Miller. 2003. Semantic Search. In Proceedings of WWW. ACM, New York, NY, USA, 700–709.Google ScholarGoogle Scholar
  30. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for OWL knowledge base systems. Web Semantics: Science, Services and Agents on the World Wide Web 3, 2(2005), 158–182.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and Martin Theobald. 2014. TriAD: A Distributed Shared-Nothing RDF Engine Based on Asynchronous Message Passing. In Proceedings of SIGMOD. ACM, New York, NY, USA, 289–300.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Özsu, Xingfang Wang, and Tianqi Jin. 2014. An Experimental Comparison of Pregel-like Graph Processing Systems. PVLDB 7, 12 (2014), 1047–1058.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xu Han, Shulin Cao, Xin Lv, Yankai Lin, Zhiyuan Liu, Maosong Sun, and Juanzi Li. 2018. OpenKE: An Open Toolkit for Knowledge Embedding. In Proceedings of EMNLP. ACL, Brussels, Belgium, 139–144.Google ScholarGoogle ScholarCross RefCross Ref
  34. Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos Mamoulis, Yasser Ebrahim, and Majed Sahli. 2016. Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. The VLDB Journal 25, 3 (2016), 355–380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Steve Harris, Nick Lamb, and Nigel Shadbolt. 2009. 4store: The Design and Implementation of a Clustered RDF Store. In 5th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS2009). CEUR Workshop Proceedings, Washington, DC, USA, 94–109.Google ScholarGoogle Scholar
  36. Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. 2013. SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-queryGoogle ScholarGoogle Scholar
  37. Andreas Harth. 2012. Billion Triples Challenge data set. http://km.aifb.kit.edu/projects/btc-2012/Google ScholarGoogle Scholar
  38. Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. 2007. YARS2: A Federated Repository for Querying Graph Structured Data from the Web. In Proceedings of ISWC. Springer, Heidelberg, Germany, 211–224.Google ScholarGoogle Scholar
  39. Olaf Hartig and Jorge Pérez. 2018. Semantics and Complexity of GraphQL. In Proceedings of WWW. International World Wide Web Conferences Steering Committee, Geneva, Switzerland, 1155–1164.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Patrick Hayes. 2004. RDF Semantics, W3C Recommendation. http://www.w3.org/TR/rdf-mt/Google ScholarGoogle Scholar
  41. Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, and Gerhard Weikum. 2008. NAGA: Searching and Ranking Knowledge. In Proceedings of ICDE. IEEE, Cancun, Mexico, 953–962.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. 2015. Taming Subgraph Isomorphism for RDF Query Processing. PVLDB 8, 11 (2015), 1238–1249.Google ScholarGoogle Scholar
  43. Kisung Lee and Ling Liu. 2013. Scaling queries over big RDF graphs with semantic hash partitioning. PVLDB 6, 14 (2013), 1894–1905.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data.Google ScholarGoogle Scholar
  45. Jure Leskovec and Rok Sosič. 2016. Snap: A general-purpose network analysis and graph-mining library. ACM Transactions on Intelligent Systems and Technology (TIST) 8, 1(2016), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Li Ma, Zhong Su, Yue Pan, Li Zhang, and Tao Liu. 2004. RStar: An RDF Storage and Query System for Enterprise Resource Management. In Proceedings of CIKM. ACM, New York, NY, USA, 484–491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-Scale Graph Processing. In Proceedings of SIGMOD. ACM, New York, NY, USA, 135–146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Brian McBride. 2001. Jena: Implementing the RDF Model and Syntax Specification. In Semantic Web Workshop 2001. CEUR Workshop Proceedings, Hong Kong, 23–28.Google ScholarGoogle Scholar
  49. Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex: a survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Computing Surveys (CSUR) 48, 2 (2015), 25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. 2015. The Graph Structure in the Web – Analyzed on Different Aggregation Levels. The Journal of Web Science 1, 1 (2015), 33–47.Google ScholarGoogle ScholarCross RefCross Ref
  51. G. E. Modoni, M. Sacco, and W. Terkaj. 2014. A Survey of RDF Store Solutions. In Proceedings of ICE. IEEE, Bergamo, Italy, 1–7.Google ScholarGoogle Scholar
  52. Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014. Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF Systems. In Proceedings of AAAI. AAAI Press, Québec, Canada, 129–137.Google ScholarGoogle Scholar
  53. Neo4j, Inc.2019. Neo4j Graph Platform. https://neo4j.com/Google ScholarGoogle Scholar
  54. Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate Cardinality Estimation for RDF Queries with Multiple Joins. In Proceedings of ICDE. IEEE, Hannover, Germany, 984–994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Thomas Neumann and Gerhard Weikum. 2010. The RDF-3X engine for scalable management of RDF data. The VLDB Journal 19, 1 (2010), 91–113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015. A review of relational machine learning for knowledge graphs. Proc. IEEE 104, 1 (2015), 11–33.Google ScholarGoogle ScholarCross RefCross Ref
  57. Natalya F. Noy, Nigam H. Shah, Patricia L. Whetzel, Benjamin Dai, Michael Dorf, Nicholas Griffith, Clement Jonquet, Daniel L. Rubin, Margaret-Anne Storey, and Christopher G. Chute. 2009. BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic acids research 37, suppl_2 (2009), W170–W173.Google ScholarGoogle Scholar
  58. Objectivity Inc.2019. InfiniteGraph. https://www.objectivity.com/products/infinitegraph/Google ScholarGoogle Scholar
  59. OpenLink Software. 2019. Virtuoso RDF Engine. https://virtuoso.openlinksw.com/Google ScholarGoogle Scholar
  60. M. Tamer Özsu. 2016. A survey of RDF data management systems. Frontiers of Computer Science 10, 3 (2016), 418–432.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Soumajit Pal and Jacopo Urbani. 2017. Enhancing Knowledge Graph Completion By Embedding Correlations. In Proceedings of CIKM. ACM, New York, NY, USA, 2247–2250.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen, and Dongyan Zhao. 2016. Processing SPARQL queries over distributed RDF graphs. The VLDB Journal 25, 2 (2016), 243–268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Yonathan Perez, Rok Sosič, Arijit Banerjee, Rohan Puttagunta, Martin Raison, Pararth Shah, and Jure Leskovec. 2015. Ringo: Interactive Graph Analytics on Big-Memory Machines. In Proceedings of SIGMOD. ACM, New York, NY, USA, 1105–1110.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Minh-Duc Pham and Peter Boncz. 2016. Exploiting Emergent Schemas to Make RDF Systems More Efficient. In Proceedings of ISWC. Springer, Basel, Switzerland, 463–479.Google ScholarGoogle Scholar
  65. Minh-Duc Pham, Linnea Passing, Orri Erling, and Peter Boncz. 2015. Deriving an Emergent Relational Schema from RDF Data. In Proceedings of WWW. International World Wide Web Conferences Steering Committee, Geneva, Switzerland, 864–874.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin Lin. 2014. Scalable Big Graph Processing in MapReduce. In Proceedings of SIGMOD. ACM, New York, NY, USA, 827–838.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Nicole Redaschi and UniProt Consortium. 2009. UniProt in RDF: Tackling Data Integration and Distributed Annotation with the Semantic Web. Nature Precedings (2009).Google ScholarGoogle Scholar
  68. Laurens Rietveld and Rinke Hoekstra. 2014. YASGUI: Feeling the Pulse of Linked Data. In Proceedings of EKAW. Springer, Basel, Switzerland, 441–452.Google ScholarGoogle Scholar
  69. Sherif Sakr and Ghazi Al-Naymat. 2010. Relational Processing of RDF Queries: A Survey. SIGMOD Record 38, 4 (2010), 23–28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen. 2016. S2RDF: RDF Querying with SPARQL on Spark. PVLDB 9, 10 (2016), 804–815.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A Distributed Graph Engine on a Memory Cloud. In Proceedings of SIGMOD. ACM, New York, NY, USA, 505–516.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. W. Shen, J. Wang, and J. Han. 2015. Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Transactions on Knowledge and Data Engineering 27, 2(2015), 443–460.Google ScholarGoogle ScholarCross RefCross Ref
  73. Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan Manegold. 2008. Column-Store Support for RDF Data Management: not all swans are white. PVLDB 1, 2 (2008), 1553–1563.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Sparsity Technologies. 2019. Sparksee. http://sparsity-technologies.com/Google ScholarGoogle Scholar
  75. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2008. YAGO: A Large Ontology from Wikipedia and WordNet. Web Semantics: Science, Services and Agents on the World Wide Web 6, 3(2008), 203–217.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Systap. 2019. BlazeGraph. https://blazegraph.com/Google ScholarGoogle Scholar
  77. Niket Tandon, Gerard de Melo, Fabian M. Suchanek, and Gerhard Weikum. 2014. WebChild: Harvesting and Organizing Commonsense Knowledge from the Web. In Proceedings of WSDM. ACM, New York, NY, USA, 523–532.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Alberto Tonon, Michele Catasta, Roman Prokofyev, Gianluca Demartini, Karl Aberer, and Philippe Cudre-Mauroux. 2016. Contextualized ranking of entity types based on knowledge graphs. Web Semantics: Science, Services and Agents on the World Wide Web 37 (2016), 170–183.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Jacopo Urbani, Sourav Dutta, Sairam Gurajada, and Gerhard Weikum. 2016. KOGNAC: Efficient Encoding of Large Knowledge Graphs. In Proceedings of IJCAI. AAAI Press, New York, NY, USA, 3896–3902.Google ScholarGoogle Scholar
  80. Jacopo Urbani and Ceriel Jacobs. 2020. Adaptive Low-level Storage of Very Large Knowledge Graphs. arxiv:2001.09078Google ScholarGoogle Scholar
  81. Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. 2016. Column-Oriented Datalog Materialization for Large Knowledge Graphs. In Proceedings of AAAI. AAAI Press, Phoenix, AZ, USA, 258–264.Google ScholarGoogle Scholar
  82. Jacopo Urbani, Jason Maassen, Niels Drost, Frank Seinstra, and Henri Bal. 2013. Scalable RDF data compression with MapReduce. Concurrency and Computation: Practice and Experience 25, 1(2013), 24–39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016. Triple Pattern Fragments: a low-cost knowledge graph interface for the Web. Web Semantics: Science, Services and Agents on the World Wide Web 37 (2016), 184–206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledge base. Commun. ACM 57, 10 (2014), 78–85.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. 2008. Hexastore: sextuple indexing for semantic web data management. PVLDB 1, 1 (2008), 1008–1019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Hugh E. Williams and Justin Zobel. 1999. Compressing Integers for Fast File Access. Comput. J. 42, 3 (1999), 193–201.Google ScholarGoogle ScholarCross RefCross Ref
  87. Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. 2018. RDF Data Storage and Query Processing Schemes: A Survey. ACM Computing Surveys (CSUR) 51, 4 (2018), 84:1–84:36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang, and Gerhard Weikum. 2016. Relationship Queries on Extended Knowledge Graphs. In Proceedings of WSDM. ACM, New York, NY, USA, 605–614.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling Liu. 2013. TripleBit: a fast and compact system for large scale RDF data. PVLDB 6, 7 (2013), 517–528.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang. 2013. A distributed graph engine for web scale RDF data. PVLDB 6, 4 (2013), 265–276.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Lei Zou, M. Tamer Özsu, Lei Chen, Xuchuan Shen, Ruizhe Huang, and Dongyan Zhao. 2014. gStore: a graph-based SPARQL query engine. The VLDB Journal 23, 4 (2014), 565–590.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Adaptive Low-level Storage of Very Large Knowledge Graphs
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              WWW '20: Proceedings of The Web Conference 2020
              April 2020
              3143 pages
              ISBN:9781450370233
              DOI:10.1145/3366423

              Copyright © 2020 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 20 April 2020

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed limited

              Acceptance Rates

              Overall Acceptance Rate1,899of8,196submissions,23%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format