skip to main content
research-article

Field Effect Deep Networks for Image Recognition with Incomplete Data

Published:03 August 2016Publication History
Skip Abstract Section

Abstract

Image recognition with incomplete data is a well-known hard problem in computer vision and machine learning. This article proposes a novel deep learning technique called Field Effect Bilinear Deep Networks (FEBDN) for this problem. To address the difficulties of recognizing incomplete data, we design a novel second-order deep architecture with the Field Effect Restricted Boltzmann Machine, which models the reliability of the delivered information according to the availability of the features. Based on this new architecture, we propose a new three-stage learning procedure with field effect bilinear initialization, field effect abstraction and estimation, and global fine-tuning with missing features adjustment. By integrating the reliability of features into the new learning procedure, the proposed FEBDN can jointly determine the classification boundary and estimate the missing features. FEBDN has demonstrated impressive performance on recognition and estimation tasks in various standard datasets.

References

  1. André Aleman, Koen B. E. Böcker, Ron Hijman, Edward H. F. de Haanb, and René S. Kahna. 2003. Cognitive basis of hallucinations in schizophrenia: Role of top-down information processing. Schizophr. Res. 64, 2--3, 178--185.Google ScholarGoogle ScholarCross RefCross Ref
  2. Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S. Kankanhalli. 2010. Multimodal fusion for multimedia analysis: a survey. Multimedia Syst. 16, 345--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. 1992. A training algorithm for optimal margin classifiers. In COLT. ACM, New York, NY, 144--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and Daphne Koller. 2006. Max-margin classification of incomplete data. In NIPS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and Daphne Koller. 2008. Max-margin classification of data with absent features. J. Mach. Learn. Res. 9, 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hao Chen, Dong Ni, Jing Qin, Shengli Li, Xin Yang, Tianfu Wang, and Pheng Ann Heng. 2015. Standard plane localization in fetal ultrasound via domain transferred deep neural networks. JBHI 19, 5, 1627--1636.Google ScholarGoogle Scholar
  7. Yanjiao Chen, Kaishun Wu, and Qian Zhang. 2015. From QoS to QoE: A tutorial on video quality assessment. IEEE Commun. Surv. Tutorials 17, 2, 1126--1165.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Uwe Dick, Peter Haider, and Tobias Scheffer. 2008. Learning from incomplete data with infinite imputations. In ICML. Citeseerx, Helsinki, Finland, 232--239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Huijun Ding, Tan Lee, Ing Yann Soon, Chai Kiat Yeo, Peng Dai, and Guo Dan. 2015. Objective measures for quality assessment of noise-suppressed speech. Speech Commun. 71, 62--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Laura Folguera, Jure Zupan, Daniel Cicerone, and Jorge F. Magallanes. 2015. Self-organizing maps for imputation of missing data in incomplete data matrices. Chemometr. Intell. Lab. 143, 146--151.Google ScholarGoogle ScholarCross RefCross Ref
  11. Geoffrey E. Hinton and Roweis R. Salakhutdinov. 2006. Reducing the dimensionality of data with neural networks. Science 313, 5786, 504--507.Google ScholarGoogle Scholar
  12. Oliver Jesorsky, Klaus J. Kirchberg, and Robert Frischholz. 2001. Robust face detection using the Hausdorff distance. In AVBPA. Springer-Verlag, London, UK, 90--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Alex Krizhevsky and Geoffrey E. Hinton. 2009. Learning multiple layers of features from tiny images. Technical Report. University of Toronto.Google ScholarGoogle Scholar
  14. Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. 2012. ImageNet classification with deep convolutional neural networks. In NIPS.Google ScholarGoogle Scholar
  15. Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2011. Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun. ACM. 54, 10, 95--103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Xuejun Liao, Hui Li, and Lawrence Carin. 2007. Quadratically gated mixture of experts for incomplete data classification. In ICML. ACM, New York, NY, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Norbert R. Malik. 1995. Electronic Circuits: Analysis, Simulation, and Design. Prentice-Hall, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Prabhu Natarajan, Pradeep K. Atrey, and Mohan Kankanhalli. 2015. Multi-camera coordination and control in surveillance systems: a survey. ACM TOMM. 11, 4, Article 57, 30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marc’aurelio Ranzato, Joshua M. Susskind, Volodymyr Mnih, and Geoffrey E. Hinton. 2011. On deep generative models with applications to recognition. In CVPR. 2857--2864. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Yann LeCun, Léeon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86, 11, 2278--2324.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. 2015. Deep learning. Nature 521, 436--444.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kun Li, Jingyu Yang, and Jianmin Jiang. 2015. Nonrigid structure from motion via sparse representation. IEEE Trans. Cybern. 45, 8, 1401--1413.Google ScholarGoogle ScholarCross RefCross Ref
  23. Archana Purwar and Sandeep Kumar Singh. 2015. Hybrid prediction model with missing value imputation for media data. ESWA. 42, 5621--5631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted Boltzmann machines for collaborative filtering. In ICML. ACM, New York, NY, 791--798. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ruslan Salakhutdinov and Geoffrey E. Hinton. 2007. Learning a nonlinear embedding by preserving class neighbourhood structure. In AISTATS. Omnipress, San Juan, Puerto Rico, 412--419.Google ScholarGoogle Scholar
  26. Jürgen Schmidhuber. 2014. Deep learning in neural networks. Technical Report, 61, 85--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kihyuk Sohn, Guanyu Zhou, Chansoo Lee, and Honglak Lee. 2013. Learning and selecting features jointly with point-wise gated boltzmann machines. In ICML. Citeseerx, Atlanta, GA, 217--225.Google ScholarGoogle Scholar
  28. Charlie Tang and Chris Eliasmith. 2010. Deep networks for robust visual recognition. In ICML. ACM, 1055--1062.Google ScholarGoogle Scholar
  29. Neill R. Taylor, Christo Panchev, Matthew Hartley, Stathis Kasderidis, and John G. Taylor. 2006. Occlusion, attention and object representations. In ICANN. Springer-Verlag, Athens, Greece, 592--601. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jason Weston, Frédéric Ratle, and Ronan Collobert. 2008. Deep learning via semi-supervised embedding. In ICML. Springer, Berlin, 639--655. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. David Williams, Xuejun Liao, Ya Xue, Lawrence Carin, and Balaji Krishnapuram. 2007. On classification with incomplete data. IEEE TPAMI. 29, 3, 427--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. David Williams, Xuejun Liao, Ya Xue, and Lawrence Carin. 2005. Incomplete-data classification using logistic regression. In ICML. ACM, New York, NY, 972--979. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hao-tian Wu, Jiwu Huang, and Yun-Qing Shi. 2015. A reversible data hiding method with contrast enhancement for medical images. J. Vis. Commun. Image R. 31, 146--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wanmin Wu, Ahsan Arefin, Raoul Rivas, Klara Nahrstedt, and Renata M. Sheppard. 2009. Quality of experience in distributed interactive multimedia environments: toward a theoretical framework. In ACM MM. 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xiaoshan Yang, Tianzhu Zhang, and Changsheng Xu. 2015. Boosted multifeature learning for cross-domain transfer. ACM TOMM. Appl. 11, 3, Article 35, 18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Quanzeng You, Jiebo Luo, Hailin Jin, and Jianchao Yang. 2015. Robust image sentiment analysis using progressively trained and domain transferred deep networks. In AAAI. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sheng-hua Zhong, Yan Liu, and Yang Liu. 2011. Bilinear deep learning for image classification. In ACMMM. ACM, New York, NY, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sheng-hua Zhong, Yan Liu, Fu-lai Chung, and Gangshan Wu. 2012. Semiconducting bilinear deep learning for incomplete image recognition. In ICMR. ACM, New York, NY, Article 32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sheng-hua Zhong, Yan Liu, Bin Li, and Jing Long. 2015. Query-oriented unsupervised multi-document summarization via deep learning model. ESWA. 42, 21, 8146--8155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Mingyuan Zhou, Haojun Chen, John Paisley, Lu Ren, Lingbo Li, Zhengming Xing, David Dunson, Guillermo Sapiro, and Lawrence Carin. 2012. Nonparametric bayesian dictionary learning for analysis of noisy and incomplete images. TIP. 21, 1, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Field Effect Deep Networks for Image Recognition with Incomplete Data

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Multimedia Computing, Communications, and Applications
        ACM Transactions on Multimedia Computing, Communications, and Applications  Volume 12, Issue 4
        August 2016
        219 pages
        ISSN:1551-6857
        EISSN:1551-6865
        DOI:10.1145/2983297
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 August 2016
        • Revised: 1 May 2016
        • Accepted: 1 May 2016
        • Received: 1 December 2015
        Published in tomm Volume 12, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader