Abstract

The seesaw model of quark masses is studied systematically, focusing on its developments. A framework in which the top quark mass is allowed to be of the order of the electroweak symmetry breaking scale, while the remaining light quarks have much smaller masses, due to the seesaw mechanism, is presented. The violation of the GIM mechanism is shown to be small and the tree level FCNC are suppressed naturally. In this model, there are many particles which could contribute to the FCNC in the one-loop level. The parameters of the model are constrained by using the experimental data on graphic mixing and εK. The rare K meson decays graphic and graphic are also investigated in the model. In these processes the scalar operators graphicgraphic, which are derived from box diagrams in the model, play an important role due to the enhancement factor MK/ms in the matrix element graphic. It is emphasized that the KL decay process through the scalar operator is not the CP-violating mode, so graphic remains non-zero even in the CP-conserved limit. The pion energy spectra for these processes are predicted.

References

1)

Yanagida
T.
Sawada
O.
Sugamoto
A.
Proceedings of the Workshop on “The Unified Theory and the Baryon Number of the Universe”, KEK 13—14 Feb
1979
(KEK-79-18)

2)

Gell-Mann
M.
Ramond
P.
Slansky
R.
Sanibel Talk
1979
Feb.
in Supergravity (North Holland, Amsterdam, 1979).
CALT-68-709

3)

Berezhiani
Z. G.
Phys. Lett.
1983
B129

4)

Chang
D.
Mohapatra
R. N.
Phys. Rev. Lett.
1987
58

5)

Rajpoot
J.
Phys. Lett.
1987
B191

6)

Davidson
A.
Wali
K. C.
Phys. Rev. Lett.
1987
59

7)

Babu
K. S.
Mohapatra
R. N.
Phys. Rev. Lett.
1989
62

8)

Koide
Y.
Fusaoka
H.
Z. Phys.
1996
C71
459
See also, Y. Koide, hep-ph/9803458[e-print arXiv]
Y. Koide, Phys. Rev. D56 (1997), 2656[APS]

9)

Morozumi
T.
Satou
T.
Rebelo
M. N.
Tanimoto
M.
Phys. Lett.
1997
B410

10)

Cabbibo
N.
Phys. Rev. Lett.
1963
10

11)

Kobayashi
M.
Maskawa
T.
Prog. Theor. Phys.
1973
49

12)

Particle Data Group
1997
edition, http://pdg.lbl.gov/

13)

Glenn
S.
et al. 
Phys. Rev. Lett.
1998
80

14)

Ali
A.
Hiller
G.
Handoko
L.
Morozumi
T.
Phys. Rev.
1997
D55

E787 Collaboration
Phys. Rev. Lett.
1997
79
(S. Adler et al.)

16)

Cabbibo
N.
Phys. Rev. Lett.
1963
10

17)

Kobayashi
M.
Maskawa
T.
Prog. Theor. Phys.
1973
49

18)

Buchalla
G.
Buras
A. J.
Lautenbacher
M. E.
Rev. Mod. Phys.
1996
68
G. Buchalla and A. J. Buras, Phys. Rev. D54 (1996),

19)

Beall
G.
Bander
M.
Soni
A.
Phys. Rev. Lett.
1982
29

20)

Ecker
G.
Grimus
W.
Nucl. Phys.
1985
B258

21)

Basecq
J.
Li
L-F.
Pal
P. B.
Phys. Rev.
1985
D32

22)

Wolfenstein
L.
Phys. Rev. Lett.
1983
51

23)

Buras
A. J.
Fleischer
R.
to appear in Heavy Flavours II, ed. A.J. Buras and M. Linde (World Scientific, 1997).

24)

Buras
A. J.
Romanino
A.
Silvestrini
L.
Y. Grossman and Y. Nir, Phys. Lett. B398 (1997), 163[Elsevier]
See, for example,

25)

Marciano
W.
Parsa
Z.
Phys. Rev.
1996
D53

26)

Inami
T.
Lim
C. S.
Prog. Theor. Phys.
1981
65

Citing Article(s):

  1. Progress of Theoretical Physics Vol. 103 No. 2 (2000) pp. 379–391

    Neutrino Mixing in the Seesaw Model Junya Hashida, Takuya Morozumi and Agus Purwanto