Skip to main content
Log in

Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids

  • Regular Article
  • Physics of Locomotion
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Diverse mechanisms for animal locomotion in fluids rely on vortex shedding to generate propulsive forces. This is a complex phenomenon that depends essentially on fluid viscosity, but its influence can be modeled in an inviscid setting by introducing localized velocity constraints to systems comprising solid bodies interacting with ideal fluids. In the present paper, we invoke an unsteady version of the Kutta condition from inviscid airfoil theory and a more primitive stagnation condition to model vortex shedding from a geometrically contrasting pair of free planar bodies representing idealizations of swimming animals or robotic vehicles. We demonstrate with simulations that these constraints are sufficient to enable both bodies to propel themselves with very limited actuation. The solitary actuator in each case is a momentum wheel internal to the body, underscoring the symmetry-breaking role played by vortex shedding in converting periodic variations in a generic swimmer’s angular momentum to forward locomotion. The velocity constraints are imposed discretely in time, resulting in the shedding of discrete vortices; we observe the roll-up of these vortices into distinctive wake structures observed in viscous models and physical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sarpkaya, J. Fluid Mech. 68, 109 (1975)

    Article  ADS  Google Scholar 

  2. P.G. Saffman, J.C. Schatzman, J. Fluid Mech. 122, 467 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Streitlien, Ph.D. thesis, Massachusetts Institute of Technology, 1994

  4. R.J. Mason, J.W. Burdick, Proc. IEEE Int. Conf. Robot. Autom., 1999

  5. R.J. Mason, Ph.D. thesis, California Institute of Techn., 2002

  6. M.A. Jones, M.J. Shelley, J. Fluid Mech. 540, 393 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Alben, M.J. Shelley, Phys. Rev. Lett. 100, 074301 (2008)

    Article  ADS  Google Scholar 

  8. S. Michelin, S.G.L. Smith, Theor. Comput. Fluid Dyn. 23, 127 (2009)

    Article  Google Scholar 

  9. S. Michelin, S.G.L. Smith, Theor. Comput. Fluid Dyn. 24, 195 (2010)

    Article  Google Scholar 

  10. A. Ysasi, E. Kanso, P.K. Newton, Phys. D 240, 1574 (2010)

    Article  Google Scholar 

  11. J. Koiller, Phys. Lett. A 120, 391 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Roenby, H. Aref, Proc. Royal Soc. London A 466, 1871 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Alben, J. Fluid Mech. 635, 27 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Vankerschaver, E. Kanso, J.E. Marsden, J. Geom. Mech. 1, 227 (2009)

    MathSciNet  Google Scholar 

  15. J. Vankerschaver, E. Kanso, J.E. Marsden, Regular and Chaotic Dyn. 15, 606 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Kanso, Theor. Comput. Fluid Dyn. 24, 201 (2010)

    Article  Google Scholar 

  17. J. Roenby, H. Aref, J. Fluids Struct. 27, 768 (2011)

    Article  ADS  Google Scholar 

  18. B.N. Shashikanth, J.E. Marsden, J.W. Burdick, S.D. Kelly, Phys. Fluids 14, 1214 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.V. Borisov, I.S. Mamaev, S.M. Ramodanov, Regular Chaotic Dyn. 8, 449 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. B.N. Shashikanth, Regular Chaotic Dyn. 10, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. B.N. Shashikanth, A. Sheshmani, S.D. Kelly, J.E. Marsden, Theor. Comput. Fluid Dyn. 22, 37 (2008)

    Article  Google Scholar 

  22. H. Xiong, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2007

  23. S.D. Kelly, H. Xiong, Theor. Comput. Fluid Dyn. 24, 45 (2010)

    Article  Google Scholar 

  24. P. Tallapragada, S.D. Kelly, Regular Chaotic Dyn. 18, 21 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.J. Fairchild, P.M. Hassing, S.D. Kelly, P. Pujari, P. Tallapragada, Proc. ASME Dyn. Syst. Control Conf. (2011)

  26. S.D. Kelly, M.J. Fairchild, P.M. Hassing, P. Tallapragada, Proc. Amer. Control Conf. (2012)

  27. S.H. Lamb, Hydrodyn. (Dover, 1945)

  28. L.M. Milne-Thomson, Theor. Hydrodyn. (Dover, 1996)

  29. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edn. (Springer-Verlag, 1999)

  30. R. Krasny, J. Fluid Mech. 184, 123 (1987)

    Article  ADS  Google Scholar 

  31. R. Krasny, Fluid Dyn. Res. 3, 93 (1988)

    Article  ADS  Google Scholar 

  32. D. Crowdy, Theor. Comput. Fluid Dyn. 24, 9 (2010)

    Article  Google Scholar 

  33. M.S. Triantafyllou, G.S. Triantafyllou, Sci. Amer. 272, 64 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.D. Kelly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallapragada, P., Kelly, S. Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids. Eur. Phys. J. Spec. Top. 224, 3185–3197 (2015). https://doi.org/10.1140/epjst/e2015-50086-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-50086-4

Keywords

Navigation